

Chuscal drilling intersects two separate gold porphyry systems

HIGHLIGHTS

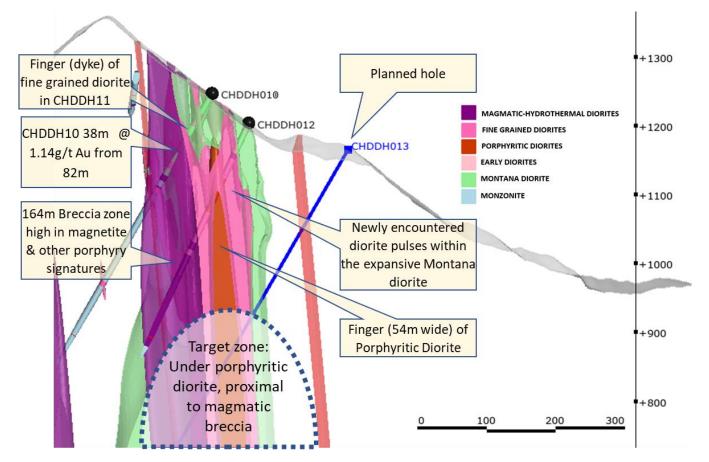
- Recent diamond drilling has successfully intersected indications of two separate gold porphyry systems within the expansive Chuscal anomalous footprint
- Drillholes CHDDH10 through to 12, focussed on the eastern (Guyacanes) porphyry target with CHDDH12 intersecting porphyritic diorite (assays pending) and CHDDH10 intersecting:
 - **38m @ 1.14g/t Au from 82m within 94m @ 0.63g/t Au from 82m**
 - Pathfinders suggest intercepted lithological unit is porphyry related
- Of particular interest in terms of gold potential at depth are multiple pulses of diorite adjacent to 164m of magmatic breccia in CHDDH12 with classic porphyry pathfinder characteristics
- Drillhole CHDDH13 expected to commence shortly, targeting the interpreted eastern porphyry under the 'hot spot' now defined by five diamond holes (CHDDH01, '02, '10, '11 and '12)
- Drillhole CHDDH09 intersected high grade epithermal veins before entering zones of a western (Corporacion) porphyry system. Intercepts include:
 - 1.35m @ 10.57g/t Au & 89.77g/t Ag from 133m incl 0.4m @ 94.9 g/t Ag from 133m
 epithermal veining
 - 2.10m @ 37.94g/t Au & 18.64g/t Ag from 232.5m incl 0.8m @ 98.3g/t Au and 44.80g/t Ag from 233.8m epithermal veining
 - 43.70m @ 0.99g/t Au with elevated Cu & Mo from 414m classic porphyry style alteration and veining

After a maiden program of exploratory drill holes completed last year at Chuscal to aid in porphyry target selection, **Los Cerros Limited (ASX: LCL) (Los Cerros** or the **Company)** is pleased to update the market regarding recently received assays and additional porphyry-focussed drilling. The Chuscal target is part of the 100% owned Quinchia Gold Project in Colombia which includes the Tesorito near surface porphyry, and the Miraflores ~450koz Reserve all within a 3km radius, plus several undrilled high priority exploration targets.

Drillholes CHDDH10, CHDDH11 and CHDDH12 - Chuscal Eastern (Guyacanes) Porphyry Target

Drillhole CHDDH10 (Table 2) was the first hole designed to test the eastern or Guyacanes porphyry target established via vectoring information gained from previous drilling. Of most note, within a broader ~236m intercept of magmatic breccias, is a ~75m magmatic breccia sub zone from 75m downhole with greater density of porphyry vein textures, increased magnetite and elevated gold and porphyry pathfinders (Figure 1), including an intercept of:

38m @ 1.14g/t Au from 82m within 94m @ 0.63g/t Au and 20ppm Mo from 82m


The above-mentioned intercept and other clues extracted from spatial relationships of lithologies, particularly breccias, was the basis for commissioning CHDDH11 (Table 3) from the same drill pad as CHDDH10 but oriented to the NNW (Figure 2). CHDDH11 intercepted fine grained diorite dykes,

being a new unit interpreted to be part of the target porphyry suite with elevated porphyry pathfinders.

Vectoring information from CHDDH10 and CHDDH11 were inputs into the location of CHDDH12, located further south of CHDDH10 and collared at a lower elevation. Based on visual logs (assays pending), CHDDH12 has intercepted the same mineralised fine grained diorite (Photo 1) intersected in CHDDH11 and intruded within that pulse is a 54m wide zone of an additional intrusion of porphyritic diorite from 89m downhole. This unit has not been previously logged and displays chlorite-sericite alteration overprinting weak potassic alteration.

Also of great interest, in terms of gold mineralisation potential at depth, is a 164m wide zone of magmatic breccia (Photo 2) from 211m with classic porphyry pathfinder characteristics – such as pervasive secondary biotite, very high magnetite plus elevated sulphides and vein density. **This is the first occasion that diorite, interpreted to be part of the target causative porphyry intrusive suite, has been logged within the eastern target zone, which together with the characteristics of the 164m breccia zone, suggests we are close to the porphyry target.**

Figure 1. Cross section of Chuscal eastern porphyry target. Note CHDDH10 is from the same pad as CHDDH11 but out of cross section line (shown as line C-D in Figure 2, below).

Clues towards a Geological Model

Recent information, particularly the intercepts of porphyritic diorite surrounded by the fine grained diorite has provided insight into a potential geological model. The Montana Diorite, a diorite mapped extensively at surface, in artisanal adits and in drill core, is interpreted to be an early, pre-mineral, pulse from the porphyry suite. A series of magma pulses showing elevated pathfinders and

encouraging alteration and textures have subsequently punched their way through the early Montana Diorite. The fine-grained diorite is one of these pulses. Like-wise, the porphyritic diorite logged in CHDDH12 is a later pulse punching through the previous pulses and possessing classic porphyry texture. The magmatic breccias, which often mark the boundaries between the pulses and contain transported material from deeper within the system, are enriched in pathfinders particularly the magmatic breccia logged in CHDDH12, which is very high in magnetite and elevated sulphides (visual log only, assays pending).

The next drill hole (CHDDH13) will step 150m further south from pad CHDDH12 and, given the drop in pad elevation, will drill some 200m below the above-mentioned intersections to test for the presence of an underlying causative gold porphyry.

Los Cerros Managing Director, Jason Stirbinskis added

"This is a highly encouraging development. Through an iterative approach we believe we are narrowing the area in which we expect to hit the eastern Guyacanes causative porphyry. In-fact, pending receipt of assays from CHDDH12, we might have already hit the porphyry target in CHDDH12.

The developing geological model is not dissimilar to the more advanced Tesorito model in which we see distinguishable pulses of different diorites belonging to the porphyry suite with varying degrees of mineralisation."

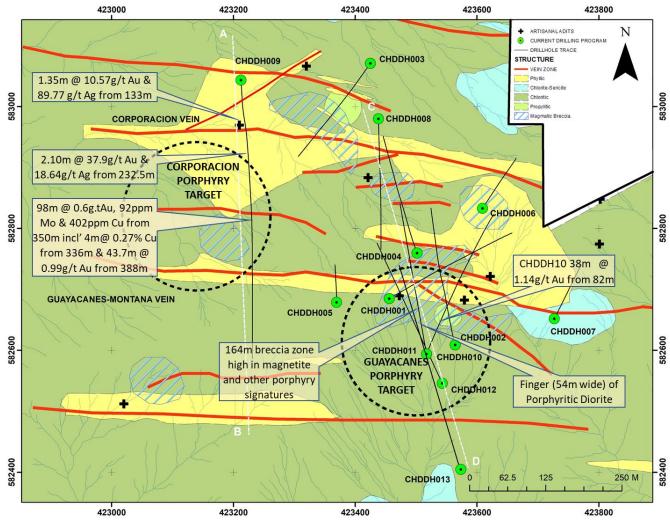



Figure 2: Plan view of Chuscal with drill hole locations and traces. Note section lines of Figures 1 & 3.

Photo 1. CHDDH12 core 50-54m. Fine grained diorite with fragments of Montana Diorite. Note the black patches and stringers are of secondary magnetite disseminated and in veinlets with secondary K-feldspar halos.

Photo 2. CHDDH12 core 219-221m. Intrusive breccia with different clasts of diorite and monzonite embedded in a diorite matrix. Note the clots and patches of magnetite with fine grained chalcopyrite-K-feldspar, secondary biotite and A type veining.

Drillhole CHDDH09 - Chuscal Western (Corporacion) Porphyry Target

The objectives of CHDDH09 (ASX release 7 December 2020) included testing depth potential of the near surface Corporacion epithermal vein corridor previously exploited by artisanal miners and

gaining critical data to support the presence of a western causative porphyry intrusion accountable for local surface gold and molybdenum anomalism.

With regard to the first objective, the hole crossed numerous epithermal veins overprinting the Corporacion Diorite including:

- 1.35m @ 10.57g/t Au & <u>89.77g/t Ag</u> from 133m
- 2.10m @ 37.94g/t Au & 18.64g/t Ag from 232.5m incl <u>0.8m @ 98.3g/t Au</u> and 44.80g/t Ag from 233.8m

The shallow drilling program continues to discover numerous epithermal veins across the entire Chuscal area reporting narrow high grade gold and silver intersections of up to 98g/t and 90g/t respectively (Table 1). The economic potential of these Au/Ag veins remains an ongoing investigation as the Company focusses on the hunt for large scale gold-copper porphyry style mineralisation.

With regard to the second objective, after leaving the Corporacion Diorite at 332m, CHDDH09 entered an 18.3m dyke or 'finger' of porphyritic diorite which is interpreted to be the upper portion of the western porphyry target with classic porphyry alteration and A-type veining. The porphyritic diorite is followed by 75m of associated magmatic breccia which comprised a dioritic matrix containing clasts or fragments of porphyritic diorite transported from its source. It is around this zone of diorite and breccia that gold mineralisation and elevated porphyry element pathfinders were encountered, such as

- 98m @ 0.6g/t Au, 92ppm Mo and 402ppm Cu from 350m incl:
 - 4m grading 0.27% Cu from 366m, and
 - 43.70m @ 0.99g/t Au from 388m incl 12m grading 883ppm Cu and 195ppm Mo from 414m

Hole CHDDH09 is the first occasion that porphyritic diorite, interpreted to be part of the causative porphyry intrusive suite, with associated magmatic breccia, has been logged in the western porphyry target.

From 530m to 612.8m (end of hole) saw a moderate increase in molybdenum grades in monzonite with weak potassic alteration to levels suggesting this zone is also near to a causative porphyry source, with 82.8m at 20ppm Mo from 530m with increasing Mo grade at depth to 40.8m @ 29ppm Mo from 572m.

Los Cerros Managing Director, Jason Stirbinskis added;

"There is clearly a zone of significant interest from 318m worthy of follow up defined by porphyritic diorite, magmatic breccias and elevated copper and molybdenum. The deeper zone from 530m with a range of molybdenum grades that are typically associated with mineralised porphyries, could be attributable to the same porphyry source swelling at depth."

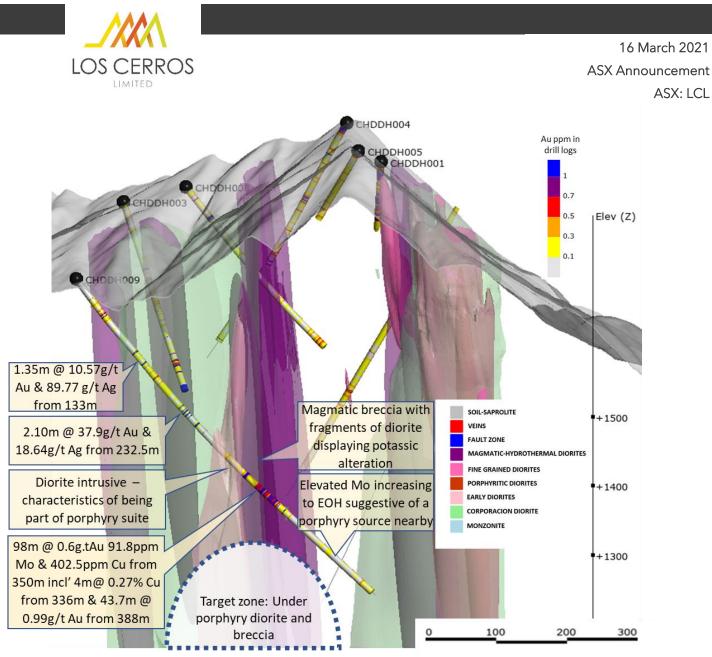


Figure 3: Cross section of CHDDH09 (shown as line A-B in Figure 2 above).

News Flow

Los Cerros has previously noted the significant increase in assay laboratory turn around times, an industry wide issue currently. The Company has been working with the lab service provider to expedite key pending assays and as a result expects to return to more frequent exploration updates to the market. The Company anticipates providing an update on exploration activities at the near surface Tesorito Porphyry (~2km North of Chuscal) before March end.

For the purpose of ASX Listing Rule 15.5, the Board has authorised this announcement to be released.

For further enquiries contact:

Jason Stirbinskis

Managing Director Los Cerros Limited 12/11 Ventnor Avenue WEST PERTH WA 6005 jason@loscerros.com.au

ASX: LCL

FORWARD LOOKING STATEMENTS This document contains forward looking statements concerning Los Cerros. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on Los Cerros' beliefs, opinions and estimates of Los Cerros as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this presentation will actually occur.

JORC STATEMENTS – COMPETENT PERSONS STATEMENTS

The technical information related to Los Cerros assets contained in this report that relates to Exploration Results (excluding those pertaining to Mineral Resources and Reserves) is based on information compiled by Mr Cesar Garcia, who is a Member of the Australasian Institute of Mining and Metallurgy and who is a Geologist employed by Los Cerros on a full-time basis. Mr Garcia has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Garcia consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

The information presented here that relates to Mineral Resources of the Dosquebradas Project, Quinchia District, Republic of Colombia is based on and fairly represents information and supporting documentation compiled by Mr. Scott E. Wilson of Resource Development Associates Inc, of Highlands Ranch Colorado, USA. Mr Wilson takes overall responsibility for the Resource Estimate. Mr. Wilson is Member of the American Institute of Professionals Geologists, a "Recognised Professional Organisation" as defined by the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Wilson is not an employee or related party of the Company. Mr. Wilson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. Mr. Wilson consents to the inclusion in the news release of the information in the form and context in which it appears

The Company is not aware of any new information or data that materially affects the information included in this release.

TABLE 2 - MIRAFLORES PROJECT RESOURCES AND RESERVES

The Miraflores Project Mineral Resource estimate has been estimated by Metal Mining Consultants in accordance with the JORC Code (2012 Edition) and first publicly reported on 14 March 2017. No material changes have occurred after the reporting of these resource estimates since their first reporting.

Resource Classification	Tonnes (000t)	Au (g/t)	Ag (g/t)	Contained Metal (Koz Au)	Contained Metal (Koz Ag)
Measured	2,958	2.98	2.49	283	237
Indicated	6,311	2.74	2.90	557	588
Measured & Indicated	9,269	2.82	2.77	840	826
Inferred	487	2.36	3.64	37	57

Miraflores Mineral Resource Estimate, as at 14 March 2017 (100% basis)

Notes:

- i) Reported at a 1.2 g/t gold cut-off.
- ii) Mineral Resource estimated by Metal Mining Consultants Inc.
- iii) First publicly released on 14 March 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Mineral Resource estimation.
- iv) These Mineral Resources are inclusive of the Mineral Reserves listed below.
- v) Rounding may result in minor discrepancies.

Miraflores Mineral Reserve Estimate, as at 27 November 2017 (100% basis)

The Miraflores Project Ore Reserve estimate has been estimated by Ausenco in accordance with the JORC Code (2012 Edition) and first publicly reported on 18 October 2017 and updated on 27 November 2017. No material changes have occurred after the reporting of these reserve estimates since their reporting in November 2017.

Reserve Classification	Tonnes (Mt)	Au (g/t)	Ag (g/t)	Contained Metal (Koz Au)	Contained Metal (Koz Ag)
Proved	1.70	2.75	2.20	150	120
Probable	2.62	3.64	3.13	307	264
Total	4.32	3.29	2.77	457	385

Notes:

i) Rounding of numbers may result in minor computational errors, which are not deemed to be significant.

ii) These Ore Reserves are included in the Mineral Resources listed in the Table above.

iii) First publicly released on 27 November 2017. No material change has occurred after that date that may affect the JORC Code (2012 Edition) Ore Reserve estimation.

Source: Ausenco, 2017

Annexure: Assay Results for Hole CHDDH09-CHDDH10-CHDDH11

Table 1. CHDDH09

From (m)	To (m)	Au (g/t)	Ag (g/t)	Cu (ppm)	Mo (ppm)
0	2	0.07	1.455	50.7	5.89
2	4	0.05	3.39	53.5	3.86
4	6	0.06	1.905	29.9	2.63
6	8	0.02	0.694	20.8	2.09
8	10	0.08	0.427	45.9	4.58
10	12	0.05	0.246	33.1	3.53
12	14	0.03	0.183	26	2.52
14	16	0.03	0.149	27	2.32
16	18	0.03	0.212	34.4	2.27
18	20	0.05	0.224	32.3	2.57
20	22	0.03	0.178	32.2	3.52
22	24	0.1	0.943	63.3	5.25
24	26	0.06	0.284	51.4	9.87
26	28	0.07	0.297	57.8	7.99
28	30	0.06	0.212	75.2	11.55
30	32	0.05	0.231	50.3	4.92
32	34	0.05	0.235	65.2	4.61
34	35.4	0.04	0.229	24.1	4.34
35.4	35.8	0.95	12.55	275	4.23
35.8	38	0.13	0.421	66.1	18.95
38	40	0.06	0.179	26.6	3.44
40	42	0.06	0.228	38.2	4.04
42	44	0.14	0.326	106.5	8.27
44	46	0.32	0.352	141.5	7.41
46	48.2	0.12	0.473	24.5	4
48.2	48.7	0.21	1.22	53.1	3.56
48.7	50	0.12	0.823	78.5	13.05
50	52	0.07	0.286	42.7	5.65
52	54	0.1	0.371	72.1	8.16

54	56	0.35	1.52	77.5	5.79
56	56.9	0.33	1.055	91.6	12.05
56.9	57.2	0.41	2.52	82.8	3.21
57.2	57.2	0.94	0.423	94.5	9.99
58	60	0.18	0.423	38.7	4.43
					-
60	62	0.31	0.574	168	27.1
62	64	0.78	4.37	68.5	4.38
64	66	0.15	0.61	72	26.9
66	66.5	0.72	1.875	180.5	60.8
66.5	66.8	0.97	3.68	313	211
66.8	67.4	1.03	3.41	210	118
67.4	70	0.14	0.471	130	13.5
70	72	0.3	0.662	176	12.15
72	74	0.39	0.942	120.5	7.33
74	76	0.14	0.282	66.5	8.57
76	77.15	0.1	0.479	77	6.45
77.15	77.6	0.24	11.1	426	85
77.6	80	0.04	0.372	121.5	13.5
80	82	0.05	0.426	171	4.42
82	84	0.04	0.205	91.7	11.15
84	86	0.04	0.238	90	5.6
86	88	0.05	0.207	71.5	4.8
88	90	0.19	0.514	238	24
90	92	0.03	0.178	35.9	9.55
92	94	0.07	0.325	54	16.35
94	96	0.04	0.24	25.9	9.14
96	98	0.04	0.144	48.4	6.28
98	100	0.04	0.168	21.6	4.61
100	102	0.09	0.276	73.9	42.9
102	104	0.03	0.245	47.6	75.1
104	106	0.03	0.237	31.4	6.9
106	108	0.19	0.34	30	8.21
108	110	0.03	0.219	22.7	7.19
110	112	0.02	0.188	29.2	15.1
112	114	0.02	0.126	19.3	5.12
114	116	0.03	0.196	27.2	6.55
116	118	0.05	0.386	31.4	8.21
118	120	0.06	0.531	21.8	6.13
120	123	0.02	0.211	18.5	9.82
122	124	0.02	0.143	20.6	14.15
124	124	0.09	0.214	51.1	8.48
124	128	0.07	0.632	28.5	4.82
128	130	0.06	0.683	22.4	2.88
120	130	0.00	2.96	69.6	4.89
130	132	0.24	8.42	465	8.83
132	133.3	11.5	94.9	732	3.44
					4.95
133.3 133.7	133.7	16.5	100 81.1	598 163 5	
155./	134.35	6.51	81.1	163.5	8.4

101.05	100				
134.35	136	0.29	2.63	121	6.68
136	138	0.13	0.909	39.9	4.83
138	140	0.06	0.386	30.4	5.06
140	142	0.2	0.238	113	8.99
142	144	0.26	0.436	243	18.15
144	146	0.23	0.425	205	19.6
146	148	0.1	0.224	63.9	29.1
148	150	0.07	0.338	37.9	13.25
150	152	0.21	0.576	219	15.85
152	154.1	1.02	9.17	224	8.97
154.1	156	0.22	0.543	182.5	14
156	158	0.29	0.255	146	15.25
158	160	0.41	0.204	98.6	9.89
160	162	0.1	0.113	34.2	11.4
162	164	0.13	0.214	75.5	6.85
164	166	0.16	0.147	61.7	7.08
166	168	0.17	0.192	92.3	7.45
168	170	0.31	0.275	98.9	7.11
170	172	0.2	0.147	56.5	6.8
172	174	0.12	0.26	119.5	17.25
174	176	0.11	0.263	122	10.25
176	178	0.21	0.344	75.2	10.6
178	180	0.58	0.876	301	61.8
180	182	0.24	0.428	81.7	17.35
182	184	0.18	0.218	96.2	12.9
184	186	0.16	0.127	80.2	10.35
186	188	0.07	0.168	95.3	16.45
188	190	0.35	0.204	130	18.4
190	192	0.26	0.137	68.1	15.4
192	194	0.24	0.14	62.2	13.55
194	196	0.19	0.2	50.3	9
196	198	0.22	0.102	19.2	4.33
198	200	0.13	0.12	13.6	5.93
200	202	0.11	0.084	16.25	2.96
202	204	0.13	0.073	18.9	4.21
204	206	0.23	0.121	53.7	11.5
206	208	0.13	0.107	39.5	3.19
208	210	0.16	0.227	49.3	6.57
210	212	0.14	0.157	66.2	11.05
212	214	0.08	0.147	41.4	11.3
214	216	0.06	0.15	42	5.88
216	218	0.06	0.135	26.2	5.04
210	210	0.18	0.108	56.4	7.15
210	220	0.10	0.237	145.5	15.55
220	222	0.27	0.141	67.1	20
222	224	0.08	0.141	100	9.45
224	220	0.05	0.193	78.3	10.8
220	220	0.03	0.205	134	27
220	230	0.11	0.205	104	27

230	232.5	0.21	0.262	127.5	23.7
232.5	233	1.82	6.17	223	5.6
233	233.8	0.15	0.269	41.2	6.58
233.8	234.6	98.3	44.8	378	23.9
234.6	236	0.2	0.228	26.8	15.15
236	238	0.08	0.171	72.3	8.62
238	239.5	0.22	0.122	26	12.75
239.5	240.3	1.99	9.13	277	7.38
240.3	242	0.13	0.131	16.9	12.65
242	244	1.72	2.99	42.5	8.88
244	246	0.11	0.121	16.65	5.53
246	246.85	0.04	0.181	26.8	5.6
246.85	248.9	3.96	13.15	411	10.75
248.9	250	0.23	0.746	53.4	3.86
250	251.5	0.05	0.144	41.1	10.3
251.5	252.8	1.76	3.26	107.5	9.75
252.8	254	0.09	0.248	24	9.82
254	256	0.04	0.13	33.7	6.83
256	258	0.04	0.207	69.9	10.7
258	260	0.02	0.108	39.7	7.32
260	262	0.04	0.143	48.6	8.09
262	264	0.04	0.182	60.9	10.4
264	266.2	0.22	0.249	85.5	12.4
266.2	267.5	3.77	21.3	672	18.8
267.5	268.8	2	8.21	424	14.7
268.8	270	0.11	0.315	42.8	13.95
270	272	0.16	0.353	64.7	13.2
272	273.9	0.06	0.207	78.3	9.59
273.9	274.4	0.14	0.698	69.2	15.75
274.4	276	0.1	0.577	131.5	7.06
276	278	0.04	0.127	25.4	6.17
278	280	0.08	0.828	42.5	9.98
280	282	0.05	0.19	41.5	9.77
282	282.5	0.66	2.37	61.2	14.15
282.5	284	0.06	0.328	38.4	8.52
284	286	0.06	0.1	28.9	6.22
286	288	0.08	0.172	46.6	6.08
288	290	0.09	0.265	66.4	6.38
290	292	0.05	0.186	56.8	8.99
292	294	0.04	0.2	71.6	9.51
294	296	0.06	0.188	56.3	6.22
296	298	0.07	0.124	38.3	6.09
298	300	0.07	0.158	53.4	7.18
300	302	0.03	0.242	106	4.64
302	304	0.02	0.161	57.8	6.94
304	306	0.05	0.246	92	9.37
306	308	0.1	0.391	162.5	9.67
308	310	0.05	0.188	98.1	3.27

<u> </u>
; ; ;
;
; ;
; ;
; ;
j
;
j
;
j
5
)
5
5
;
5
;

398	400	2.52	1.59	184	431
400	402	3.32	1.385	948	113
402	404	0.4	1	135.5	179.5
404	406	0.79	2.09	93.7	448
406	408	0.63	1.47	167.5	430
408	410	0.51	1.455	46.6	642
410	412	0.36	1.16	140.5	305
412	414	0.74	1.59	75	149
414	416	1.07	2.3	973	205
416	418	0.91	1.845	888	163.5
418	420	1.98	3.98	863	194.5
420	420.9	0.59	0.749	499	25.7
420.9	422	0.65	1.46	711	29.3
422	423.8	0.76	2.07	1335	52.6
423.8	426	1.57	5.26	688	39.6
425.0	428	0.42	0.591	171	24.9
428	430	0.42	0.391	94.9	24.5
430	431	0.25	0.482	63.7	10.2
431	431.7	2.41	18.25	332	100.5
431.7	434	0.09	0.243	65.4	76.3
434	436	0.18	0.212	123	109
436	438	0.11	0.112	32.6	6.06
438	440	0.12	0.11	26.2	2.91
440	442	0.12	0.201	223	43.4
442	443.3	1.1	0.251	104.5	118
443.3	444	0.11	0.164	86.8	5.43
444	446	0.15	0.143	70.5	4.22
446	448	0.29	0.138	66.6	7
448	450	0.08	0.104	30	4.98
450	450.7	0.09	0.115	79.9	43.4
450.7	451.7	0.25	0.393	410	9.75
451.7	453	0.09	0.133	71.9	6.8
453	454.36	0.35	0.133	48.4	2.85
454.36	455	0.03	0.109	35.9	3.85
455	456	0.24	0.234	217	36
456	458	0.06	0.122	43	2.87
458	460	0.03	0.066	12.1	38.2
460	462	0.00	0.000	9.23	2.62
462	464	0.02	0.067	15.85	4.66
464	466	0.02	0.075	11.65	2.61
466	468	0.02	0.059	11.2	2.9
468	470	0.02	0.045	8.78	4.46
400	472	0.02	0.095	25.6	4.37
472	472	0.04	0.149	39.7	9.39
474	476	0.03	0.143	31.8	6.4
476	478	0.12	0.104	58.5	33.2
478	480	0.03	0.1	23.4	4.03
480	482	0.07	0.16	52.8	6.13
480	482	0.07	0.10	52.0	0.13

402	404	0.06	0.142	EC A	E 10
482	484	0.06	0.143	56.4 70.5	5.48
484	486	0.09	0.129	79.5	6.38
486	488	0.15	0.218	60.2	5.99
488	490	0.05	0.178	19	3.95
490	492	0.04	0.129	13	2.87
492	494	0.02	0.06	8.87	1.99
494	496	0.07	0.082	25.9	3.26
496	498	0.15	0.096	16.9	2.92
498	500	0.03	0.061	9.98	3.98
500	502	0.01	0.042	5.52	1.81
502	504	0.02	0.075	16.3	7.87
504	506	0.02	0.059	10.05	2.88
506	508	0.02	0.077	18.3	2.5
508	510	0.12	0.06	14.75	3.16
510	512	0.07	0.126	33.2	4.68
512	514	0.03	0.089	21	2.84
514	516	0.12	0.13	33.3	3.68
516	518	0.11	0.171	41	27.6
518	520	0.06	0.13	35	18.1
520	522	0.1	0.112	34.8	4.72
522	524	0.04	0.064	19.05	2.71
524	526	0.29	0.18	41	5.19
526	528	0.11	0.113	23.7	3.85
528	530	0.12	0.183	83.8	7.77
530	532	0.19	0.283	120	24.3
532	534	0.19	0.229	132	44.9
534	536	0.06	0.12	51.7	12.35
536	538	0.04	0.093	28.5	3.65
538	540	0.07	0.102	46.2	4.04
540	542	0.05	0.07	30.7	5.55
542	544	0.04	0.09	52.8	5.16
544	546	0.07	0.094	60.4	9.54
546	548	0.03	0.062	14.1	2.49
548	550	0.05	0.136	52.3	6.09
550	550	0.08	0.100	69.2	9.23
550	554	0.14	0.289	160	22.4
554	556	0.06	0.063	24.3	2.28
556	558	0.05	0.054	19.8	3.98
558	560	0.05	0.088	59.8	3.42
560	562	0.09	0.126	127	27.2
562	564	0.09	0.087	70.8	5.51
564	566	0.13	0.087	37.1	27.9
	568	0.04	0.083	36.4	3.17
566					
568	570	0.09	0.08	52.6	18.9
570	572	0.06	0.092	58.1	10.5
572	574	0.06	0.073	51.4	37.2
574	576	0.08	0.118	99	13.85
576	578	0.12	0.198	153.5	151.5

578	580	0.08	0.114	87.1	4.36
580	582	0.09	0.252	76.5	19.05
582	584	0.11	0.485	100.5	20.8
584	586	0.1	0.202	44.8	4.85
586	588	0.05	0.1	61	14.75
588	590	0.05	0.203	76.2	66.2
590	592	0.07	0.162	47.8	11.45
592	594	0.47	0.431	61.4	8.35
594	596	0.29	0.365	87.5	38.3
596	598	0.08	0.122	63.9	15.5
598	600	0.2	0.212	155.5	40.1
600	602	0.1	0.151	103.5	12.6
602	604	0.13	0.189	102	48.7
604	606	0.08	0.184	104	10.85
606	608	0.19	0.282	197	29.8
608	610	0.1	0.13	88.9	11.85
610	612	0.17	0.15	77.4	23.1
612	612.8	0.16	0.19	71.1	24.9
	EOH				

EOH

Table 2 CHDDH10

From (m)	To (m)	Au (g/t)	Ag (g/t)	Cu (ppm)	Mo (ppm)
0	2	0.08	0.622	45.4	1.91
2	4	0.09	0.521	51.8	1.63
4	6	0.29	0.578	108.5	6.06
6	8	0.14	0.2	67.7	7.53
8	10	0.15	0.184	78.7	11.4
10	12	0.08	0.192	59	5.49
12	14	0.07	0.124	47.1	5.07
14	16	0.08	0.172	38.8	3.71
16	18	0.16	0.416	64.1	6.89
18	20	0.25	0.398	306	16.15
20	22	0.34	0.416	287	18.45
22	24	0.64	0.841	523	34.6
24	26	0.24	0.647	170.5	18
26	28	0.67	0.653	530	35
28	30	0.62	0.184	126	13.25
30	32	0.11	0.198	52.6	5.64
32	34	0.02	0.061	19.1	2.61
34	36	0.26	0.346	250	14.65
36	38	0.25	0.329	204	12.9
38	40	0.16	0.265	150.5	11.4
40	42	0.11	0.165	74	6.3
42	44	0.14	0.306	237	11.65
44	46	0.11	0.235	151.5	11.75
46	48	0.09	0.178	87.8	7.2

48	50	0.24	0.36	202	7.7
50	52	0.64	0.431	68.8	5.37
52	54	0.45	0.391	74.7	4.97
54	56	0.1	0.167	34	10.15
56	58	0.06	0.185	24.6	10.9
58	60	0.06	0.181	10.4	5.67
60	62	0.08	0.135	32.9	9.06
62	64	0.11	0.22	79.1	8.37
64	66	0.11	0.189	59.3	7.91
66	68	0.13	0.185	74.1	4.84
68	70	0.1	0.136	77.2	4.19
70		0.1	0.168	94.5	
-	72		0.168		9.8
72	74	0.25		136	4.56
74	76	0.31	0.257	119	5.93
76	78	0.37	0.355	141	8.22
78	80	0.15	0.192	84.1	6.56
80	82	0.31	0.236	108	8.86
82	84	0.85	0.355	230	19.8
84	86	0.76	0.563	242	16.2
86	88	0.42	0.435	166.5	17.15
88	90	0.23	0.268	101	14.55
90	92	0.33	0.312	118.5	15.75
92	94	0.68	0.87	152.5	16.85
94	96	0.3	0.317	125	9.54
96	96.9	0.36	0.558	235	15.25
96.9	98.8	1.54	3.58	220	21.9
98.8	100	0.66	0.472	336	16.85
100	102	0.26	0.39	119.5	17.8
102	104	0.17	0.349	115.5	19.95
104	106	0.3	0.333	77.2	39.6
106	108	5.09	0.759	142.5	16.75
108	110	0.69	0.667	472	19.4
110	112	0.85	0.272	142	19.2
112	114	2.67	0.662	274	21.6
114	115.6	1.55	1.27	187	19.7
115.6	116	4.59	8.28	209	17.2
116	118	2.96	1.57	133	18.1
118	120	0.85	0.434	147.5	21.6
120	122	0.14	0.24	74.7	14.55
122	124	0.22	0.37	108.5	24
124	126	0.18	0.27	75.9	12.9
	128	0.18	0.3	101.5	12.9
126					
126 128		0.24	0.26	101.5	13
128	130	0.24	0.26	101.5	13 15.1
		0.24 0.43 0.44	0.26 0.45 0.224	101.5 111.5 96	13 15.1 18.2

136	138	0.71	1.6	172	14.55
138	140	0.34	0.318	195.5	20.1
140	142	0.21	0.221	123	24
142	144	0.32	0.431	193.5	21.9
144	146	0.43	0.502	130	22.2
146	148	0.29	0.296	110.5	18.7
148	150	0.28	0.3	126	19.75
150	152	0.52	0.32	134	17
152	154	0.44	0.326	150.5	21.7
152	154	0.44	0.297	156.5	24.1
154	158	0.24	0.153	65.8	25.6
150	160	0.19	0.169	80.7	25.8
158	162	0.13	0.115	57	36.1
160	162	0.11	0.35	80.9	48.4
					-
164	166	0.18	0.22	122.5	19.4
166	168	0.13	0.143	71.2	8.46
168	170	0.2	0.153	87.9	18.6
170	172	0.16	0.254	68.3	19.6
172	174	0.17	0.478	77	11.95
174	176	0.44	0.463	355	35.6
176	178	0.17	0.227	127	13.5
178	180	0.16	0.258	132.5	18.85
180	182	0.05	0.136	46	6.69
182	184	0.09	0.19	82.2	13.9
184	186	0.09	0.112	63.3	35.6
186	188	0.23	0.226	157	17.4
188	190	0.21	0.229	99.1	22.3
190	192	0.18	0.229	37.6	49.5
192	194	0.11	0.161	101	25.6
194	196	0.1	0.139	72.8	11.85
196	198	0.11	0.12	37	24.3
198	200	0.48	0.294	78.4	16.65
200	202	0.07	0.161	38.8	17
202	204	0.07	0.122	50.1	51.5
204	206	0.07	0.094	38.3	34.4
206	208	0.07	0.122	40.4	16.3
208	210	0.06	0.108	36.7	16.4
210	212	0.33	0.487	232	95.4
212	214	0.15	0.213	104	25.7
214	216	0.09	0.158	82.9	24.6
216	218	0.09	0.162	63.5	22.2
218	220	0.14	0.135	95.1	24
220	222	0.11	0.166	106	24.2
222	224	0.08	0.125	53.9	23.8
224	226	0.09	0.131	48.8	17.6
226	228	0.25	0.264	38.6	18.3

228	230	0.17	0.399	74.1	27.7
230	232	0.27	0.504	259	55.6
232	234	0.15	0.237	89.4	66
234	236	0.13	0.426	77.6	52.3
236	238	0.43	9.4	278	91.1
238	240	0.13	0.14	89.8	51.3
240	242	0.05	0.071	27.9	18.75
242	244	0.11	0.171	58.7	14.55
242	246	0.03	0.086	48.2	9.73
244	248	0.09	0.268	77.6	29.4
248	250	0.09	0.171	67.1	19.5
240	250	0.05	0.081	33.1	4.92
250	252	0.00	0.131	35.3	4.92
252					7.92
	256	0.05	0.12	29.3	
256	258	0.03	0.074	14.85	13.9
258	260	0.03	0.112	15.7	13.05
260	262	0.04	0.122	37.6	14.2
262	264	0.02	0.114	10.25	11.1
264	266	0.03	0.103	23.1	11.85
266	268	0.06	0.153	30.3	21.7
268	270	0.03	0.071	11.15	10.15
270	272	0.03	0.059	14.95	8.62
272	274	0.14	0.155	43.3	7.46
274	276	0.07	0.121	56.7	19.05
276	278	0.27	0.156	86.4	19.25
278	280.3	0.09	0.14	29.8	19.15
280.30	282	0.04	0.245	26.9	8.53
282	284	0.04	0.233	44.2	12.35
284	285.70	0.03	0.243	26.5	12.85
285.70	288	0.11	0.531	33.7	10.25
288	290	0.05	0.254	36.8	13.25
290	292	0.08	0.244	53.1	32.4
292	294	0.18	0.285	49.1	19.9
294	296	0.08	0.289	46.3	18
296	298	0.06	0.24	28.1	17.05
298	300	0.04	0.271	33.1	18.55
300	302	0.07	0.308	58.6	23.6
302	304	0.08	0.257	41.2	23.3
304	304.60	0.13	0.297	34.2	29.5
304.60	306.20	0.19	0.329	108	17.2
306.20	308	0.07	0.203	31.4	11.8
308	310	0.07	0.277	57.2	11.4
310	311.70	0.11	1.185	96.8	13.9
311.70	313.70	0.53	0.425	146	20.2
313.70	314.30	0.46	0.38	101.5	12.75
314.30	315.90	0.16	0.344	103.5	22.4
51 1.50	0 - 0 . 0 0	5.10		_00.0	

315.90	318	0.08	0.367	60.9	15.4
318	320	0.13	0.316	35.3	20.7
320	322	0.07	0.216	43.1	19.05
322	324	0.25	0.515	63.5	11.65
324	326	0.28	0.352	67.1	5.57
326	328	0.21	0.301	34.5	5.22
328	330	0.04	0.218	21.6	3.36
330	332	0.04	0.212	19.1	5.44
332	334	0.07	0.217	24.2	3.03
334	336	0.07	0.192	36.6	5.48
336	338	0.15	0.275	62.5	7.31
338	340	0.08	0.19	54.8	4.8
340	342	0.04	0.141	18.5	3.41
342	344	0.17	0.325	44.1	3.1
344	346	0.07	0.207	37.7	5.13
346	348	0.04	0.155	30.7	11.5
348	350	0.07	0.201	21.5	7.8
350	352	0.1	0.243	21.2	23
352	354	0.16	0.381	69.7	14.1
354	356	0.37	35.7	578	18.2
356	358	0.05	0.377	21.6	7.11
358	360	0.09	0.409	41.7	12.2
360	362	0.06	0.317	45.3	8.57
362	364	0.09	0.232	38	15.6
364	366	0.19	0.317	47.6	20
366	368	0.16	0.489	89.9	22
368	370	0.16	0.249	55	11.6
370	372	0.05	0.229	36.7	5.4
372	374	0.04	0.213	35.5	5.62
374	376	0.05	0.212	38.1	5.23
374	378	0.18	0.603	80.4	12.8
378	380	0.06	0.157	23.2	3.65
380	381.40	0.08	0.334	29.8	7.32
381.40	381.80	2.13	22.7	765	2.52
381.80	382.10	11.15	57.5	1100	17.8
381.80	382.50	0.6	2.8	95.5	18.65
382.10					
	384	0.33	0.688	37.4	11
384	386	0.28	0.606	114.5	13.55
386	388	0.48	0.997	190.5	20.8
388	390	0.34	0.589	219	31.7
390	392	0.14	0.499	131	7.9
392	394	0.09	0.307	50.8	7.88
394	396	0.1	0.275	47.3	10.1
396	398	0.16	0.575	99.1	5.31
398	400	0.15	0.15	21.2	5.64
400	402	0.05	0.159	39.2	6.28

402	404	0.16	0.399	97.1	10.7
404	406	0.33	0.42	277	14.6
406	408	0.1	0.171	43.8	9.91
408	410	0.02	0.104	19.45	2.54
410	412	0.06	0.129	64.9	6.25
412	414	0.03	0.121	36.3	2.9
414	416	0.12	0.286	43.3	12.25
416	418	0.03	0.141	23.6	4.74
418	420	0.01	0.118	25.6	5.2
420	422	0.12	0.223	88.8	22.7
422	424	0.12	0.37	165.5	16.9
424	426	0.1	0.304	50.8	7.03
424	428	0.07	0.136	56.7	4.28
420	430	0.15	0.241	171.5	45.3
428	430	0.13	0.308	217	89.5
	-				
432 434	434	0.13	0.267 0.119	178	44.2 9.27
	436			32.4	
436	438	0.13	0.173	90.8	248
438	440	0.13	0.213	96.1	17.85
440	442	0.13	0.239	113.5	25.7
442	444	0.04	0.161	44.6	7.84
444	446	0.06	0.174	55.6	12.2
446	448	0.06	0.136	34.8	12.15
448	450	0.03	0.103	26	6.74
450	452	0.16	0.263	109.5	22.2
452	454	0.02	0.084	14.45	4.08
454	456	0.1	0.153	46.5	8.66
456	458	0.08	0.145	39.2	11.75
458	460	0.06	0.249	49.7	11.4
460	462	0.23	0.333	143.5	44.3
462	464	0.08	0.235	47.5	7.17
464	466	1.14	1.37	41.8	4.66
466	468	0.84	1.81	28.8	4.34
468	470	0.33	0.51	92.1	10.35
470	472	0.32	0.612	105	12.7
472	474	0.2	0.323	47	4.53
474	476	0.22	0.402	131.5	8.27
476	478	0.11	0.416	26.1	10.75
478	480	0.06	0.205	28.7	11.1
480	482	0.17	0.494	38.3	13.65
482	484	0.03	0.116	10.85	57
484	486	0.14	0.207	34.5	20.3
486	488	0.14	0.287	23.8	6.41
488	490	0.22	0.313	32.3	13.9
490	492	0.04	0.166	46.1	7.21
492	494	0.24	0.206	92.3	6.15

494 496 0.16 0.606 44.6 5.55 496 498 0.22 0.279 183.5 8.94 498 500.2 0.2 0.261 181.5 4.99		EOU				
	498	500.2	0.2	0.261	181.5	4.99
494 496 0.16 0.806 44.6 5.55	496	498	0.22	0.279	183.5	8.94
	494	496	0.16	0.606	44.6	3.55

EOH

Table 3. CHDDH11

From (m)	To (m)	Au (g/t)	Ag (g/t)	Cu (ppm)	Mo (ppm)
0.00	2.00	0.15	0.56	113	3.5
2.00	4.00	0.12	0.67	127	2.99
4.00	6.00	0.06	0.24	49	1.6
6.00	8.00	0.35	0.58	139	10.05
8.00	10.00	0.23	0.25	59	10.05
10.00	12.00	0.4	0.82	138	11.8
12.00	14.00	0.12	0.27	54	5.83
14.00	16.00	0.11	0.17	81	5.8
16.00	18.00	0.16	0.24	73	6.7
18.00	20.00	0.07	0.18	47	5.9
20.00	22.00	0.22	0.3	131	12.4
22.00	24.00	0.21	0.67	135	10.05
24.00	26.00	0.21	0.36	168	8.76
26.00	28.00	0.17	0.31	172	12.1
28.00	30.00	0.27	0.52	281	18
30.00	32.00	0.25	0.36	216	13.7
32.00	33.00	0.2	0.3	148	13.1
33.00	34.00	0.16	0.29	126	9.45
34.00	36.00	0.18	0.88	96	11.8
36.00	38.00	0.19	0.25	105	12.2
38.00	40.00	0.31	0.44	288	22.9
40.00	42.00	0.17	0.19	144	12.95
42.00	44.00	0.22	0.24	182	18.3
44.00	46.00	0.09	0.24	110	6.16
46.00	48.00	0.03	0.09	31	5.8
48.00	50.00	0.18	0.25	139	11.35
50.00	52.00	0.6	0.22	85	6.01
52.00	54.00	0.17	0.24	146	8.6
54.00	55.80	0.71	0.64	252	8.6
55.80	58.00	0.33	0.23	120	9.85
58.00	60.00	0.21	0.2	72	9
60.00	62.00	0.18	0.25	94	7.25
62.00	64.00	0.2	0.23	93	12.2
64.00	66.00	0.22	0.2	70	9.3
66.00	68.00	0.2	0.2	83	12.05
68.00	70.00	0.18	0.19	93	14.95
70.00	72.00	0.24	0.26	120	19.3
72.00	73.10	0.35	0.38	195	23.7
73.10	74.00	0.22	0.24	136	50.1

74.00	76.00	0.3	0.28	209	24.9
76.00	77.80	0.98	0.4	210	22.8
77.80	80.00	0.37	0.5	222	15.85
80.00	82.00	0.77	0.59	294	33.6
82.00	84.00	0.23	0.31	158	19.85
84.00	86.00	0.21	0.32	145	21.2
86.00	87.30	0.31	0.44	163	25
87.30	89.00	0.43	0.57	225	26.4
89.00	90.70	0.25	0.32	141	11.6
90.70	92.40	0.14	0.27	83	11.15
92.40	94.00	0.2	0.3	108	9.16
94.00	95.60	0.66	0.35	141	11.2
95.60	97.65	4.8	7.44	287	18.4
97.65	99.50	0.26	0.45	272	17.3
99.50	101.50	0.18	0.36	148	16.9
101.50	103.50	0.24	0.32	178	18.9
103.50	105.50	0.19	0.3	167	18.55
105.50	107.50	0.13	0.25	103	18.6
107.50	109.50	0.25	0.27	108	26.2
109.50	111.50	0.27	0.41	251	19.1
111.50	113.50	0.16	0.27	136	15.5
113.50	115.50	0.48	0.37	249	19.15
115.50	117.50	0.53	0.5	360	23.8
117.50	118.60	1.14	0.46	277	17.05
118.60	119.45	0.43	0.39	313	33.6
119.45	121.30	0.26	0.3	182	18.2
121.30	123.00	0.23	0.41	200	36
123.00	125.00	0.57	0.58	455	14.4
125.00	125.70	0.33	0.28	120	15.2
125.70	127.70	0.24	0.24	100	7.2
127.70	129.00	0.07	0.17	63	6.92
129.00	131.00	0.11	0.21	92	7.01
131.00	133.00	0.12	0.19	66	5.89
133.00	135.00	0.37	0.25	131	10.8
135.00	136.80	0.07	0.18	61	4.92
136.80	138.80	0.13	0.23	68	8.77
138.80	140.70	0.14	0.29	82	7.26
140.70	142.60	0.23	0.29	105	8.81
142.60	144.60	0.11	0.38	59	7.2
144.60	146.60	0.19	0.38	124	7.98
146.60	148.00	0.11	0.33	70	8.14
148.00	150.00	0.1	0.33	60	8.18
150.00	152.00	0.12	0.3	78	11.5
152.00	154.00	0.07	0.33	50	8.04
154.00	155.20	0.15	0.45	55	7.04
155.20	155.50	1.19	5.7	591	36.8

155.50	156.80	0.88	0.37	64	10.3
156.80	157.90	0.16	0.38	92	9.63
157.90	159.90	0.10	0.38	69	6.05
				130	
159.90	161.90	0.16	0.28		12.95
161.90	163.90	0.15	0.29	103	18.65
163.90	165.80	0.17	0.22	117	10.9
165.80	167.80	0.24	0.28	207	11.25
167.80	169.00	0.23	0.7	121	18.75
169.00	170.10	0.21	0.34	95	13
170.10	172.00	0.39	0.5	125	14.45
172.00	174.00	0.25	0.53	82	20.1
174.00	176.00	0.49	0.81	50	7.2
176.00	178.00	0.57	0.57	141	12.5
178.00	180.00	0.29	0.35	125	12.25
180.00	182.00	0.3	0.44	148	25.1
182.00	184.00	0.44	0.52	50	11.25
184.00	186.00	0.22	0.36	62	7.34
186.00	188.00	0.24	0.41	154	14.05
188.00	190.00	0.08	0.3	46	9.2
190.00	192.00	0.19	0.34	59	31.8
192.00	194.00	0.1	0.28	31	16.7
194.00	196.00	0.13	0.31	47	32.6
196.00	197.70	0.1	0.28	34	12.05
197.70	199.70	0.08	0.31	25	16.35
199.70	201.70	0.11	0.31	69	13.95
201.70	203.70	0.16	0.38	98	53.2
203.70	205.70	0.17	0.26	92	29.5
205.70	207.70	0.08	0.24	53	9.67
207.70	209.70	0.12	0.28	79	14.65
209.70	211.70	0.14	0.33	78	10.45
211.70	213.70	0.13	0.34	56	17.35
213.70	215.70	0.13	0.2	48	22.4
215.70	217.70	0.13	0.27	65	11.2
213.70	219.70	0.11	0.27	95	25
217.70	213.70	0.13	0.34	47	51
221.70	223.70	0.15	0.28	61	53.8
223.70	225.70	0.17	0.28	85	50.4
225.70	227.70	0.25	0.28	104	42.6
227.70	229.70	0.21	0.31	93	41.3
229.70	231.70	0.13	0.29	78	35
231.70	233.70	0.15	0.25	78	29.2
233.70	235.70	0.22	0.3	153	32.7
235.70	238.00	0.08	0.24	60	7.11
238.00	240.00	0.11	0.24	75	14.6
240.00	242.00	0.08	0.25	63	14.15
	244.00			52	

244.00	246.00	0.08	0.27	51	7.01
246.00	248.00	0.14	0.3	88	19.2
248.00	249.20	0.21	0.31	118	26.7
249.20	249.80	0.83	0.86	70	12.7
249.80	252.00	0.05	0.22	55	12
252.00	254.00	0.1	0.25	76	18.15
254.00	256.00	0.09	0.18	44	21.2
256.00	258.00	0.06	0.2	49	21.4
258.00	260.00	0.12	0.21	104	16.5
260.00	261.00	0.08	0.22	62	18.25
261.00	262.00	0.33	0.49	68	16.2
262.00	264.00	0.15	0.22	107	13.25
264.00	266.00	0.21	0.5	384	48.2
266.00	268.00	0.15	0.28	109	36.6
268.00	270.00	0.15	0.26	84	8.17
270.00	272.00	0.11	0.29	92	60.6
272.00	274.00	0.12	0.26	54	7.72
274.00	276.00	0.16	0.32	67	25
276.00	278.00	0.19	0.26	82	16.95
278.00	280.00	0.12	0.19	55	10.05
280.00	282.00	0.18	0.27	45	9.13
282.00	284.00	0.08	0.21	42	10.9
284.00	286.00	0.12	0.23	57	10.45
286.00	288.00	0.15	0.22	79	18.35
288.00	290.00	0.12	0.18	39	14.65
290.00	292.00	0.06	0.18	31	20.8
292.00	294.00	0.08	0.18	46	9.85
294.00	296.00	0.17	0.26	88	92.1
296.00	298.00	0.19	0.28	124	22.3
298.00	300.00	0.16	0.3	150	25.6
300.00	302.00	0.13	0.42	131	20.8
302.00	304.00	0.1	0.21	68	5.85
304.00	306.00	0.18	0.24	121	10.75
306.00	306.70	0.4	0.64	550	23.6
306.70	308.00	0.45	0.37	239	45.8
308.00	310.00	0.13	0.2	68	4.41
310.00	312.00	0.12	0.22	110	14.45
312.00	314.00	0.13	0.31	139	11.6
314.00	315.00	1.11	0.18	78	2.74
315.00	316.00	0.34	0.45	245	9.07
316.00	318.00	0.57	0.37	247	14.15
318.00	320.00	0.43	0.36	328	13.3
320.00	322.00	0.3	0.29	163	4.78
322.00	324.00	0.38	0.4	214	8.6
324.00	326.00	0.34	0.31	162	10.8
326.00	328.00	0.27	0.32	182	20.7

328.00	330.00	0.19	0.25	137	10.95
330.00	332.00	0.17	0.14	68	9.66
332.00	334.00	0.23	0.14	84	11.6
334.00	336.00	0.09	0.09	26	4.1
336.00	338.00	0.19	0.11	32	2.05
338.00	340.00	0.38	0.14	76	11.25
340.00	342.00	0.55	0.2	129	17.95
342.00	344.00	0.17	0.16	129	7.15
344.00	346.00	0.13	0.09	26	5.32
346.00	348.00	0.18	0.15	79	12.9
348.00	350.00	0.14	0.16	99	9.93
350.00	352.00	0.06	0.15	49	6.39
352.00	354.00	0.16	0.16	77	8.62
354.00	356.00	0.16	0.14	91	9.27
356.00	358.00	0.16	0.13	72	3.35
358.00	360.00	0.12	0.12	55	6.47
360.00	362.00	0.12	0.12	95	6.51
362.00	364.00	0.11	0.52	61	7.13
364.00	366.00	0.1	0.12	56	3.89
366.00	368.00	0.13	0.12	98	10.45
368.00	370.00	0.15	0.14	34	2.95
370.00	372.00	0.08	0.12	67	9.64
372.00	374.00	0.03	0.07	25	4
374.00	376.00	0.05	0.08	36	3.78
376.00	378.00	0.03	0.00	79	8.25
378.00	380.00	0.12	0.17	37	5.49
380.00	382.00	0.03	0.08	19	1.97
382.00	384.00	0.02	0.06	13	6.86
384.00	386.00	0.12	0.36	14	3.78
386.00	388.00	0.04	0.21	11	1.93
388.00	390.00	0.02	0.06	12	2.06
390.00	392.00	0.04	0.08	17	2.08
392.00	394.20	0.04	0.08	19	2.31
394.00	396.40	0.22	0.23	81	31
396.40	398.00	0.13	0.28	48	6.12
398.00	400.00	0.03	0.06	14	2.04
400.00	402.00	0.38	0.35	50	15.55
402.00	404.15	0.07	0.12	48	8.76
404.15	404.60	0.43	0.79	279	40
404.60	405.50	0.39	0.71	151	32.6
405.50	405.90	0.38	0.69	28	15.1
405.90	408.00	0.05	0.08	19	1.7
408.00	410.00	0.05	0.09	24	31
410.00	412.00	0.04	0.08	16	13.1
412.00	414.00	0.12	0.2	130	89.1
414.00	416.00	0.04	0.08	35	8.94

.

16 March 2021 ASX Announcement ASX: LCL

416.00	418.00	0.04	0.11	29	16.25
418.00	420.00	0.03	0.12	36	4.59
420.00	422.00	0.04	0.11	41	14.15
422.00	424.00	0.06	0.15	48	4.79
424.00	426.00	0.08	0.19	108	17.1
426.00	428.00	0.08	0.16	84	7.66
428.00	430.00	0.01	0.07	10	4.91
430.00	432.00	0.03	0.09	29	11.35
432.00	434.00	0.02	0.08	25	15.05
434.00	436.00	0.03	0.07	21	4.11
436.00	438.00	0.11	0.1	53	6.42
438.00	440.00	0.06	0.08	36	7.38
440.00	442.00	0.05	0.09	20	33.6
442.00	444.00	0.08	0.16	33	18.9
444.00	446.00	0.1	0.13	23	4.02
446.00	448.00	0.05	0.09	36	4.08
448.00	450.00	0.1	0.1	59	4.92
450.00	452.00	0.1	0.08	36	4.16
452.00	452.80	0.11	0.13	82	7.52
	FOH				

EOH

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling is carried out to produce HQ and NQ core. Following verification of the integrity of sealed core boxes and the core within them at the Company's core shed in Quinchia, the core is 'quick logged' by a Project Geologist and marked for sampling. Following the marking of the cutting line and allocation of sample numbers, allowing for insertion of QA/QC samples, the core is cut by employees in the company's facility within the coreshed. Nominally core is cut in half and sampled on 2m intervals, however the interval may be reduced by the Project Geologist based on the visual 'quick log'. Samples are bagged in numbered calico sacks and these are placed in heavy duty plastic bags with the sample tag. Groups of 5 samples are bagged in a hessian sack, labelled and sealed, for transport. Sample preparation is carried out by ALS' Laboratory in Medellin where the whole sample is crushed to -2mm and then 1kg split for pulverising to – 75micron. Splits are then generated for fire assay (Au-AA26) and analyses for an additional 48 elements using multi-acid (four acid) digest with ICP finish (MEMS61) at ALS' laboratory in Lima, Peru.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The Chuscal drilling program is a diamond drilling program using HQ diameter core. In the case of operational necessity this will be reduced to NQ core. Where ground conditions permit, core orientation is conducted on a regular basis.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The drillers are required to meet a minimum recovery rate of 95%. On site, a Company employee is responsible for labelling (wood spacer block) the beginning and end depth of each drill run plus actual and expected recovery in meters. This and other field processes are audited on a daily basis. On receipt the core is visually verified for inconsistencies including depth labels, degree of fracturing (core breakage versus natural), lithology progression etc. If the core meets the required conditions it is cleaned, core pieces are orientated and joined, lengths and labelling are verified, and

10 November 2020

ASX Announcement

ASX: LCL

0		ASX: L
Criteria	JORC Code explanation	Commentary
		 geotechnical observations made. The core box is then photographed. Orientated sections of core are aligned, and a geology log prepared. Following logging, sample intervals are determined and marked up and the cutting line transferred to the core. Core quality is, in general, high and far exceeding minimum recovery conditions.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging is carried out visually by the Project Geologists focusing on lithology, structure, alteration and mineralization characteristics. Initially a 'quick log' is carried out to guide sampling and this is then followed by detailed logging. The level of logging is appropriate for exploration and initial resource estimation evaluation. All core is photographed following the initial verification on receipt of the core boxes and then again after the 'quick log', cutting and sampling. Ie on the half core. All core is logged and sampled, nominally on 2m intervals but in areas of interest more dense logging and sampling may be undertaken. On receipt of the multi-element geochemical data this is interpreted for consistency with the geologic logging.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 After logging and definition of sample intervals by the geologist, the marked core is cut in half using a diamond saw in a specially designed facility on site. All core is cut and sampled. The standard sample interval is 2m but may be varied by the geologist to reflect lithology, alteration or mineralization variations. As appropriate, all half or quarter core generated for a specific sample interval is collected and bagged. The other half of the core remains in the core box as a physical archive. The large size (4-8kg) of individual samples and continuous sampling of the drill hole, provides representative samples for exploration activities. Through the use of QA/QC sample procedure in this phase of drilling, any special sample preparation requirements eg due to unexpectedly coarse gold, will be identified and addressed prior to the resource drilling phase.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the 	 Gold assays are obtained using a lead collection fire assay technique (AuAA26) and analyses for an additional 48 elements obtained using multi-acid (four acid) digest with ICP finish (ME-MS61) at ALS' laboratory in Lima, Peru. Fire assay for gold is considered a "total" assay technique.

10 November 2020

ASX Announcement

Criteria	JORC Code explanation	Commentary
laboratory tests	 analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 An acid (4 acid) digest is considered a total digestion technique. However, for some resistant minerals, not considered of economic value at this time, the digestion may be partial e.g. Zr, Ti etc. No field non-assay analysis instruments were used in the analyses reported. Los Cerros uses certified reference material and sample blanks and field duplicates inserted into the sample sequence. Geochemistry results are reviewed by the Company for indications of any significant analytical bias or preparation errors in the reported analyses. Internal laboratory QA/QC checks are also reported by the laboratory and are reviewed as part of the Company's QA/QC analysis. The geochemical data is only accepted where the analyses are performed within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All digital data received is verified and validated by the Company's Competent Person before loading into the assay database. Over limit gold or base metal samples are re-analysed using appropriate, alternative analytical techniques. (Au-Grav22 50g and OG46). Reported results are compiled by the Company's geologists and verified by the Company's database administrator and exploration manager. No adjustments to assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drill hole is located using a handheld GPS and Lider DTM. This has an approximate accuracy of 3-5m, considered sufficient at this stage of exploration. On completion of the drilling program the collars of all holes will be surveyed using high precision survey equipment. Downhole deviations of the drill hole are evaluated on a regular basis and recorded in a drill hole survey file to allow plotting in 3D. The grid system is WGS84 UTM Z18N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The interpretation of surface mapping and sampling relies on correlating isolated points of information that are influenced by factors such as weathering, accessibility and sample representivity. This impacts on the reliability of interpretations which are strongly influenced by the experience of the geologic team. Structures, lithologic and alteration boundaries based on surficial information are interpretations based on the available data and will be refined as more data becomes available during the exploration program. It is only with drilling, that provides information in the third dimension, that the geologic model can be refined.

10 November 2020
ASX Announcement

ASX: LCL

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill hole is preferentially located in the prospective area. All drillholes are planned to best test the lithologies and structures as known taking into account that steep topography limits alternatives for locating holes. Drill holes are oriented to determine underlying lithologies and porphyry vectors and to intercept the two principal sets of veining.
Sample security	The measures taken to ensure sample security.	 All core boxes are nailed closed and sealed at the drill platform. On receipt at the Quinchia core shed, the core boxes are examined for integrity. If there are no signs of damage or violation of the boxes, they are opened and the core is evaluated for consistency and integrity. Only then is receipt of the core formally signed off. The core shed and all core boxes, samples and pulps are secured in a closed Company facility at Quinchia secured by armed guard on a 24/7 basis. Each batch of samples are transferred in a locked vehicle and driven 165km to ALS laboratories for sample preparation in Medellin. The transfer is accompanied by a company employee.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	At this stage no audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Exploration Titles were validly issued as Concession Agreements pursuant to the Mining Code. The Concession Agreement grants its holders the exclusive right to explore for and exploit all mineral substances on the parcel of land covered by such concession agreement. The concessions are registered to AngloGold Ashanti Colombia SAS (AGAC). Los Cerros has a 100% beneficial interest in these tenements which are in the process of transfer to Los Cerros. There are no outstanding encumbrances or charges registered against the Exploration Title at the National Registry.

Criteria JORC Code explanation Co	ommentary
done by other parties.	The first prospecting work that refers to the Chuscal prospect was recorded in 1986 by the author Michael GA Hill who reported an average of 4ppm to 5ppm gold in the sector "Loma El Guerrero", which today is known as Chuscal Alto. There was no detailed geological description or geological map produced. The effects of hydrothermal brecciation in dioritic intrusive rocks was noted. In 1995, a Canadian TVX listed company, Minera de Colombia S.A., conducted a study in the Quinchia district, focusing on the prospects known at the time (Miraflores, La Cumbre, Chuscal and a locality that today is Tesorito). For the Chuscal area, three locations with gold mineralization being worked by artisanal miners were described, which comprise quartz+ limonite veins within pyritic argillic alteration zones. AGAC commissioned a brief reconnaissance survey in 2004 from which their geologist reported that the types of alteration and mineralization were similar to AGAC's model of "Gold-Rich Porphyry Deposits". AGAC conducted another prospect assessment in March 2005 from which it was reported that artisanal miners were working auriferous quartz-pyrite stockwork veins, some within porphyritic andesites, that had intruded into the Ira Monzonite. The mineralized veins had a strong structural control trending NW-SE. AGAC commissioned various reconnaissance exploration campaigns from 2005 to 2006 principally focusing on the assessment of the geology exposed in the shallow underground openings being developed by artisanal miners. In 2012, Seafield Resources Ltd undertook a grid-based C-horizon soil geochemical survey and conducted underground rock-chip channel sampling over the Chuscal area and within the Guayacanes artisanal workings respectively. In 2013, AGAC commissioned a systematic saprolite and rock-chip sampling and mapping program from which it was concluded that the mineralization at Chuscal had both porphyry (Au-Cu-Mo) and epithermal (As-Sb) affinities, with phyllic alteration overprinting earlier potassic alteration of porphyri

10 November 2020
ASX Announcement
ASX: LCL

Criteria	JORC Code explanation	Commentary					
Geology	Deposit type, geological setting and style of mineralisation.	 The Chuscal gold zero dioritic composition large, Cretaceous-a emplacement of the rich hydrothermal evo 500m zone. (+100p) anomalous rock sarr Cerros ASX release a Central Zone of 60 samples is 2.66g/t A incorporated within a samples) where the Au (Note 2). Note 2: The cut sar samples including applied. For the Cet 53 and 115 sample The underground ar 	and probably of l ge Irra Monzonit stocks and brec ents, that togeth b Au in soils). T ples have been dated 6 Decemi 0m by 240m (18 u (uncut) or 1.94 broader area (1 average grade c hples were cap one assaying 5 ntral & Main zo s at > 0.2 g/t Au isanal workings	Miocene age, e. At Chuscal cias are assor- her produced a he target is w collected by a ber 2018). The 33 samples) w 4g/t Au (Note 3 Main Zone) of of samples is a ped at 20g/t a 4 g/t Au. In n nes respective.	that have in the formati ciated with a NW orient ithin a zone AGAC (refe e rock chip /here the av 2, below). T 900m by 5 1.79g/t Au (Au which a heither case vely, the av	ntrudeo on and signific tated, § e within r Figur sampli verage This is 30m (2 uncut) affecte e was verage	d into th ant gold 200m by which e 2 in Lung defir grade c 289 or 1.339 d 6 a lower includ
		of approximately 70 mineralisation at sha channel sample res probable early-stage a late stage high gra style returned avera average 8g/t Au (No Note 3: The cut un 20g/t Au.	llow depths. The Its indicate two stockwork-disside vein style (po ge grades of 1.5 te 3).	e, indicating the multi-element dominant style eminated porpossible epither g/t Au and the g/t Au and the formation of the term of ter	he continua nt rock-chip es of miner ohyry-style rmal overpr e epitherma	ation of o under alizatio minera int). Th I-style	ground on. A llization ne porph veins
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 mineralisation at sha channel sample resi probable early-stage a late stage high gra style returned avera average 8g/t Au (Note • Note 3: The cut un 20g/t Au. 	llow depths. The Its indicate two stockwork-disside vein style (po ge grades of 1.5 te 3).	e, indicating the multi-element dominant style eminated porpossible epither g/t Au and the entry of the channe entry of the ch	he continua nt rock-chip es of miner ohyry-style rmal overpr e epitherma el samples	ation of o under alizatio minera int). Th Il-style were o	ground on. A ilization ne porph veins capped
	of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar	mineralisation at sha channel sample resi probable early-stage a late stage high gra style returned avera average 8g/t Au (No • Note 3: The cut un 20g/t Au.	Ilow depths. The Its indicate two stockwork-disside vein style (po ge grades of 1.5 ie 3). Ierground rock	e, indicating the multi-element dominant style eminated porpossible epither g/t Au and the c-chip channe RL (m)	he continua nt rock-chip es of miner ohyry-style rmal overpr e epitherma el samples Azimuth	ation of o under alizatio minera int). Th I-style were of Dip	rground on. A llization ne porph veins capped EOH (m)
	of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea	mineralisation at sha channel sample resi probable early-stage a late stage high gra style returned avera average 8g/t Au (No • Note 3: The cut un 20g/t Au. HOLE EAST CHDDH001 423456	Ilow depths. The Its indicate two stockwork-disside vein style (po ge grades of 1.5 e 3). Ierground rock	e, indicating the multi-element dominant style eminated porpossible epithen g/t Au and the c-chip channe RL (m) 1316	he continua nt rock-chip es of miner ohyry-style rmal overpr e epitherma el samples	ation of o under alizatio minera int). Th Il-style were o	rground on. A ilization ne porpl veins capped EOH (m) 452.5
	of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar	mineralisation at sha channel sample resi probable early-stage a late stage high gra style returned avera average 8g/t Au (No • Note 3: The cut un 20g/t Au.	Ilow depths. The Its indicate two stockwork-disside vein style (po ge grades of 1.5 ie 3). Ierground rock	e, indicating the multi-element dominant style eminated porpossible epither g/t Au and the c-chip channe RL (m)	he continua nt rock-chip es of miner ohyry-style rmal overpr e epitherma el samples Azimuth 60	ation of o under alizatio minera int). Th I-style were of Dip 60	rground on. A llization ne porpl veins capped EOH (m)
	 of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	mineralisation at sha channel sample resi probable early-stage a late stage high gra style returned avera average 8g/t Au (Note 3: The cut un 20g/t Au.HOLEEASTCHDDH001423456CHDDH002423564	Ilow depths. The Its indicate two stockwork-disside vein style (po ge grades of 1.5 te 3). Ierground rock	e, indicating the multi-element dominant style eminated porpossible epither g/t Au and the c-chip channe RL (m) 1316 1262	he continua nt rock-chip es of miner ohyry-style rmal overpr e epitherma el samples Azimuth 60 345	ation of o under alizatio minera int). Th Il-style were of Dip 60 60	rground on. A llization ne porph veins capped EOH (m) 452.5 412.4
	 of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	mineralisation at sha channel sample resiprobable early-stage a late stage high gra style returned avera average 8g/t Au (Note 3: The cut un 20g/t Au.HOLEEASTCHDDH001423456 CHDDH002CHDDH003423425	Ilow depths. The Its indicate two stockwork-disside vein style (po ge grades of 1.5 te 3). Ierground rock NORTH 582685 582609 583071 582759.76	e, indicating ti e multi-elemen dominant style eminated porp ossible epithen g/t Au and the -chip channe RL (m) 1316 1262 1226	he continua nt rock-chip es of miner obyry-style rmal overpr e epitherma el samples Azimuth 60 345 216	ation of o under alizatio minera int). Th Il-style were of 00 60 50	rground on. A lization he porph veins capped EOH (m) 452.5 412.4 302.1

10 November 2020

ASX Announcement

ASX: LCL

Criteria	JORC Code explanation	Commenta	1717					
Gillena		Commenta	li y					
	not detract from the understanding of the report, the	CHDDH007	423727	582652	1273.2	26.5	49.2	150
	Competent Person should clearly explain why this is the case.	CHDDH008	423438	582980	1254	178	47	300
		CHDDH009	423212.25	583043.42	1162.7175	177	50	612.8
		CHDDH010	423517	582594	1247	20	67	500.2
		CHDDH011	423517	582594	1247	350	60	452.8
		CHDDH012	423543	582546	1203.8	335	65	572.8
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of hig grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Quoted ir within the No cut of All widths information system. 	ntervals use a interval. high grades l quoted are in	nas been done ntercept width:	rage composit	ths, as the	ere is in	sufficient
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e 'down hole length, true width not known'). 	stage in Mineralis orientatio	the exploration sation geomet	n of the projectry is not accur	ement are con ct. ately known as I structures are	s the exa	ct numb	er,
Diagrams	 Appropriate maps and sections (with scales) and tabulation of intercepts should be included for any significant discover being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	ry including	g drilling over		on of drill hole: rospect is sho			
Balanced reporting	 Where comprehensive reporting of all Exploration Results not practicable, representative reporting of both low and hig grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 		g is considere	ed balanced.				
Other substantive	 Other exploration data, if meaningful and material, should la reported including (but not limited to): geological observations; geophysical survey results; geochemical 	was perf	formed in 201	9 and presente	red the Chusc ed two magnet molybdenum a	ic high ar	nomalies	s that are

10 November 2020

ASX: LCL

Criteria	JORC Code explanation	Commentary
exploration data	survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	anomalies appear associated with the presence of potassic alteration and quartz-magnetite veining and stockworks.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional drilling is required to systematically test the nature and extent of mineralisation. The objective of the program is to provide a guide to the mineralization potential of the system, both in terms of potential grade and volume, to guide resource targeted drilling in a third phase drilling program.