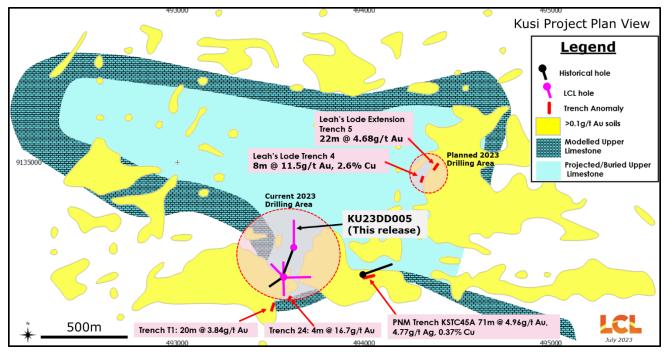
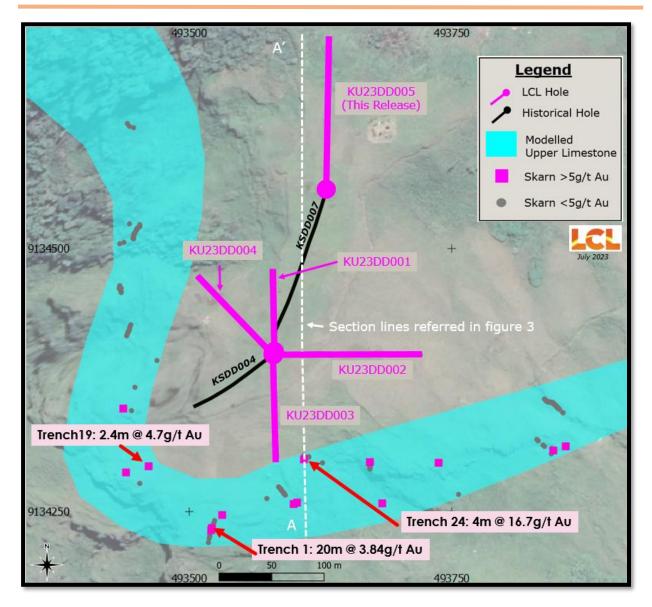


# More exceptional Kusi gold drill results

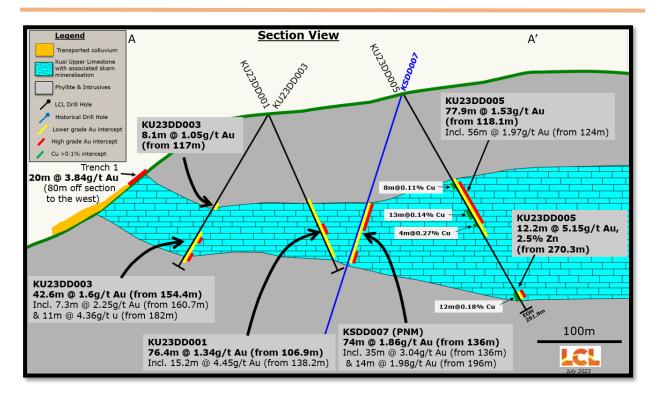

### Drill hole 5 confirms bulk tonnage potential of the Kusi gold skarn

LCL Resources Ltd **(ASX: LCL) (LCL or the Company)** is pleased to provide an update on its drilling program at the Kusi gold/copper skarn target - PNG. Drill results from KU23DD005, the first significant step out to the north of previous drilling, have expanded the significant gold intercepts by 150m (Figures 1 & 2). KU23DD005 returned best intercepts of:

### 77.9m @ 1.53g/t Au from 118.1m, including 56m @ 1.97g/t Au from 124m


### 12.2m @ 5.15g/t Au, 2.5% Zn from 270.3m.

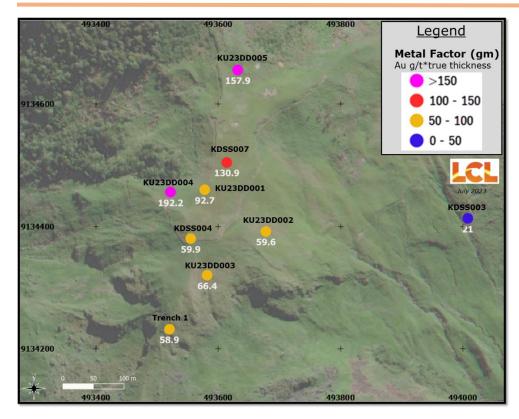
KU23DD005 is the first drill hole to report elevated copper within the target unit, with multiple anomalous zones including 13m @ 0.14% Cu (Figure 3). The presence of elevated copper, in the form of chalcopyrite and copper oxides, is associated with brown garnet and magnetite. This mineral assemblage is indicative of higher temperature mineralising fluids, and hence drill hole KU23DD005 is interpreted to be more proximal to a mineralising source. The significant deeper gold-zinc intercept in KU23DD005, at the contact with the underlying phyllite, is associated with a pyrite-magnetite-sphalerite skarn horizon which has been intersected in all drill holes in this target area to date (Table 2, Figures 3 & 5).




**Figure 1:** Plan view of Kusi showing location of current and planned drilling areas, gold in soil geochemical anomalies, and modelled "Upper Limestone" skarn unit. Kusi hole KU23DD005 has expanded modelled gold envelopes to the north. See Figure 2 for enlargement of current drilling area.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Refer to ASX announcements 25 November 2022, 9 May 2023 and 16 February 2023. The Company confirms that it is not aware of new information the affects the information contained in the original announcements.




**Figure 2**: Plan view of reported LCL drill holes, historical drill hole traces, modelled Upper Limestone and LCL skarn sample locations.<sup>1</sup> See Table 1 for drill intercepts.



**Figure 3**: Section view of LCL drill holes KU23DD001, 3 and 5 and KSDD007 at Kusi. See Figure 2 for section location. See Figure 5 for photo of visible gold. Refer to ASX announcements 25 November 2022 (KSDD007), 24 April 2023 (KU23DD001) and 18 May 2023 (KS23DD003) for more information. The Company confirms that it is not aware of new information that affects the information contained in the original announcements.

All five drill holes of LCL's maiden Kusi drilling program have now delivered intercepts exceeding >50gram-metres (gm) Au (metal factor) with an additional three historic holes of compelling metal factors (Table 1). These results, combined with trenching, rock chip sampling, soil sampling, and mapping, define to date a 600m north-south zone of skarn mineralisation (Figure 4).

Drilling remains ongoing as part of an initial 3,000m program and will include further step out drilling at Kusi and initial drill testing of Leah's Lode, a second skarn target <1km NE of the current drilling area (Figure 1).



**Figure 4**: Plan view of Metal Factor points from Kusi. The metal factors are calculated as (True Thickness (m) x Weighted Average gold grade (g/t)).

LCL's Principal Geologist, John Dobe commented "A metal factor exceeding 50gm gold from early stage drilling is very exciting and considered a drill result worthy of follow-up drilling. That every hole we have drilled exceeds this marker, with some reaching nearly 200gm, is a testament to the compelling nature of this developing discovery".

A video of John Dobe discussing the geology of recent drill holes can be accessed on the Company's digital media webpage. <u>https://www.lclresources.au/site/investor-information/digital-media</u>

| Hole_ID       | Metal Factor<br>gm (Au) | Estimated true<br>thickness and<br>weighted average<br>Au grade |
|---------------|-------------------------|-----------------------------------------------------------------|
| KU23DD001     | 92.7                    | 69.2m @ 1.34 g/t Au                                             |
| KU23DD002     | 59.6                    | 32.2m @ 1.85 g/t Au                                             |
| KU23DD003     | 66.4                    | 36.9m @ 1.6 g/t Au<br>7m @ 1.05 g/t Au                          |
| KU23DD004     | 192.2                   | 45m @ 3.65 g/t Au<br>21.8m @ 1.28 g/t Au                        |
| KU23DD005     | 157.9                   | 67.5m @ 1.53 g/t Au<br>10.6m @ 5.15 g/t Au                      |
| KSDD004 (PNM) | 59.9                    | 47.5m @ 1.26g/t Au                                              |
| KSDD007 (PNM) | 130.9                   | 70.4m @ 1.86g/t Au                                              |
| KSDD003 (PNM) | 21.0                    | 8.8m @ 2.39g/t Au                                               |
| LCL trench 1  | 58.9                    | 15.3m @ 3.84g/t Au                                              |

**Table 1:** Previously reported Kusi drill hole assay results from KU23DD001-4<sup>1</sup> together with KU23DD005, expressed as metal factors (True Thickness (m) x Weighted Average gold grade (g/t)). Note for drill holes KU23DD003, KU23DD004, and KU23DD005, the metal factors are calculated as the sum of two discrete intervals intercepted within the host limestone unit. KSD003, '4 and '7 were drilled by previous explorer Pacific Niugini Minerals (PNG) Ltd<sup>1</sup>.



**Figure 5**: Geology strip log of KU23DD005 at Kusi, with photos of the various skarn mineralisation types and Au, Cu and Zn assay results. Note: Multi-element assays are pending from 196m to 268m. LCL are not expecting any significant base metal results from the pending assays.

The Company is experiencing significant delays in assay turnaround times, particularly for nongold values, which can take as long as 7 weeks. The Company is working with the service provider to improve assay turnaround times, but acknowledges the backlog is a region-wide issue.

For the purpose of ASX Listing Rule 15.5, the Board has authorised this announcement to be released.

#### For further enquiries contact:

Jason Stirbinskis Managing Director - LCL 3/88 William Street PERTH WA 6000 jason@lclresources.au

FORWARD LOOKING STATEMENTS This document contains forward looking statements concerning LCL Resources. Forwardlooking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on LCL's beliefs, opinions and estimates of LCL as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. Readers should not place undue reliance on forward-looking information. The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this presentation will actually occur.

#### JORC STATEMENTS - COMPETENT PERSONS STATEMENTS

The technical information related to LCL's assets contained in this report that relates to Exploration Results is based on information compiled by Mr John Dobe, who is a Member of the Australasian Institute of Mining and Metallurgy and who is a Geologist employed by LCL on a full-time basis. Mr Dobe has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Dobe consents to the inclusion in the release of the matters based on the information he has compiled in the form and context in which it appears.

| KU23D00591.98.4Fault0.490.020.03KU23D00546Phylike0.040.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.010.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hole_ID   | From  | То    | Lithology | Au g/t | Cu<br>% | Zn<br>% | Hole_ID   | From  | То    | Lithology | Au g/t | Cu<br>% | Zn<br>% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|-----------|--------|---------|---------|-----------|-------|-------|-----------|--------|---------|---------|
| KU22D006689990.440.010.010.010.010.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.020.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KU23DD005 | 0     | 4     | Colluvium | 0.02   | 0.00    | 0.01    | KU23DD005 | 81.9  | 82.4  | Fault     | 0.19   | 0.02    | 0.03    |
| KU22D0005iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii<i<i<i<i<i<i<i<i<i<i<<i<i<i<<i<i<i<<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KU23DD005 | 4     | 6     | Phyllite  | 0.05   | 0.01    | 0.00    | KU23DD005 | 82.4  | 83    | Phyllite  | 0.09   | 0.01    | 0.01    |
| KU22D0061012Phylile0.300.010.01KU22D0068686Phylile0.030.020.02KU22D006167416Phylile0.020.010.01KU22D0068687Phylile0.160.02KU22D0061674Phylile0.120.010.01KU22D0068687Phylile0.160.02KU22D0062022Phylile0.160.01KU22D0068697Phylile0.160.01KU22D0062224Phylile0.170.000.01KU22D0068191810.020.01KU22D0062424Phylile0.310.000.01KU22D0069191910.020.01KU22D0062424Phylile0.310.000.01KU22D006929292Phylile0.020.01KU22D0063434Phylile0.160.01KU22D0069495Phylile0.02PhylileKU22D0063434Phylile0.160.01KU22D0069292Phylile0.160.02KU22D0063440Phylile0.160.01KU22D0069292Phylile0.160.01KU22D0064447Phylile0.160.01KU22D0069292Phylile0.160.10KU22D0064647Phy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KU23DD005 | 6     | 8     | Phyllite  | 0.04   | 0.01    | 0.01    | KU23DD005 | 83    | 84    | Phyllite  | 0.10   | 0.03    | 0.02    |
| KU23D000         12         14         Phylite         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01                                                                                                                                      | KU23DD005 | 8     | 10    | Phyllite  | 0.04   | 0.01    | 0.01    | KU23DD005 | 84    | 85    | Phyllite  | 0.08   | 0.02    | 0.02    |
| KU23D000         fla         fla <thl>fla         fla         fla         f</thl>                                                                                                                                                                   | KU23DD005 | 10    | 12    | Phyllite  | 0.03   | 0.01    | 0.01    | KU23DD005 | 85    | 86    | Phyllite  | 0.11   | 0.03    | 0.02    |
| KU32D0005         17.9         20.         Phylike         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01                                                                                                                                  | KU23DD005 | 12    | 14    | Phyllite  | 0.01   | 0.01    | 0.01    | KU23DD005 | 86    | 87    | Phyllite  | 0.08   | 0.02    | 0.02    |
| KU23DD005         17.9         20         Phyllite         0.15         0.01         0.00           KU23DD005         22         24         Phyllite         0.31         0.00         0.00           KU23DD005         22         24         Phyllite         0.31         0.00         0.01           KU23DD005         22         24         Phyllite         0.31         0.00         0.01           KU23DD005         22         24         Phyllite         0.31         0.00         0.01           KU23DD005         30         Phyllite         0.12         0.01         0.01           KU23DD005         30         32         Phyllite         0.22         0.01         0.01           KU23DD005         32         34         Phyllite         0.02         0.01         0.00           KU23DD005         34         36         Phyllite         0.02         0.01         0.00           KU23DD005         34         40         Phyllite         0.02         0.01         0.00           KU23DD005         44         46         Phyllite         0.02         0.01         0.01           KU23DD005         50         2         Phyllite                                                                                                                                                                                                                | KU23DD005 | 14    | 16    | Phyllite  | 0.02   | 0.01    | 0.00    | KU23DD005 | 87    | 88    | Phyllite  | 0.15   | 0.04    | 0.02    |
| KU23DD005         Z2         Phyllite         0.44         0.01         0.00           KU23DD005         Z2         24         Phyllite         0.31         0.00         0.00           KU23DD005         Z4         26         Phyllite         0.12         0.01         0.00           KU23DD005         Z4         26         Phyllite         0.12         0.01         0.00           KU23DD005         Z4         28         Phyllite         0.12         0.01         0.00           KU23DD005         30         22         Phyllite         0.02         0.01         0.00           KU23DD005         30         32         Phyllite         0.02         0.01         0.00           KU23DD005         34         36         Phyllite         0.02         0.01         0.01           KU23DD005         38         40         Phyllite         0.02         0.01         0.01           KU23DD005         38         40         Phyllite         0.01         0.01         0.01           KU23DD005         36         4         Phyllite         0.02         0.01         0.01           KU23DD005         50         52         Phyllite                                                                                                                                                                                                                  | KU23DD005 | 16    | 17.9  | Phyllite  | 0.01   | 0.01    | 0.01    | KU23DD005 | 88    | 89.1  | Phyllite  | 0.08   | 0.04    | 0.01    |
| KU23DD005         Z2         Z4         Phyllite         0.31         0.00         0.00           KU23DD005         Z4         Z6         Phyllite         0.31         0.00         0.01           KU23DD005         Z6         Z8         Phyllite         0.12         0.01         0.00           KU23DD005         Z8         30         Phyllite         0.02         0.01         0.00           KU23DD005         Z4         Z4         Phyllite         0.02         0.01         0.00           KU23DD005         Z4         Z4         Phyllite         0.02         0.01         0.00           KU23DD005         Z4         Z4         Phyllite         0.02         0.01         0.01           KU23DD005         Z4         Z4         Phyllite         0.01         0.01         0.01           KU23DD005         Z4         Z4         Phyllite         0.01         0.01         0.01           KU23DD005         Z4         Z4         Phyllite         0.02         0.01         0.01           KU23DD005         Z4         Z4         Phyllite         0.02         0.01         0.01           KU23DD005         Z5         Phyllite                                                                                                                                                                                                                 | KU23DD005 | 17.9  | 20    | Phyllite  | 0.15   | 0.01    | 0.00    | KU23DD005 | 89.1  | 90    | Fault     | 0.05   | 0.01    | 0.01    |
| KU23D0005         24         26         Phylite         0.31         0.00         0.01           KU23D0005         28         28         Phylite         0.41         0.01         0.01           KU23D0005         30         32         Phylite         0.22         0.01         0.00           KU23D0005         32         34         Phylite         0.22         0.01         0.00           KU23D0005         32         34         Phylite         0.22         0.01         0.00           KU23D0005         32         34         Phylite         0.22         0.01         0.00           KU23D0005         38         30         Phylite         0.22         0.01         0.00           KU23D0005         38         40         Phylite         0.02         0.01         0.01           KU23D0005         42         44         Phylite         0.01         0.01         0.01           KU23D0005         42         44         Phylite         0.11         0.02         0.01           KU23D0005         52         54         Phylite         0.11         0.02         0.01           KU23D0005         52         54         Phylite </td <td>KU23DD005</td> <td>20</td> <td>22</td> <td>Phyllite</td> <td>0.44</td> <td>0.01</td> <td>0.00</td> <td>KU23DD005</td> <td>90</td> <td>91</td> <td>Fault</td> <td>0.09</td> <td>0.03</td> <td>0.00</td>  | KU23DD005 | 20    | 22    | Phyllite  | 0.44   | 0.01    | 0.00    | KU23DD005 | 90    | 91    | Fault     | 0.09   | 0.03    | 0.00    |
| KU23D0005         26         28         Phyllite         0.12         0.01         0.00           KU23D0005         28         30         Phyllite         0.04         0.01         0.00           KU23D0005         30         32         Phyllite         0.02         0.01         0.00           KU23D0005         30         32         34         Phyllite         0.18         0.01         0.00           KU23D0005         32         34         Phyllite         0.02         0.01         0.00           KU23D0005         34         36         Phyllite         0.02         0.01         0.00           KU23D0005         40         4         Phyllite         0.01         0.01         KU23D0005         97.9         93.3         Porphylite         0.41         p           KU23D0005         42         44         Phyllite         0.01         0.01         0.01         KU23D0005         100.9         Phyllite         0.41         p           KU23D0005         44         46         Phyllite         0.41         0.41         KU23D005         100.9         Phyllite         0.42         Phyllite         0.42         0.41         p         p      <                                                                                                                                                                                    | KU23DD005 | 22    | 24    | Phyllite  | 0.31   | 0.00    | 0.00    | KU23DD005 | 91    | 92    | Fault     | 0.13   | 0.02    | 0.01    |
| KU23DD005         28         30         Phylike         0.04         0.01         0.00           KU23DD005         32         24         Phylike         0.02         0.01         0.00           KU23DD005         32         34         Phylike         0.02         0.01         0.00           KU23DD005         34         36         Phylike         0.02         0.01         0.00           KU23DD005         38         40         Phylike         0.05         0.01         0.00           KU23DD005         38         40         Phylike         0.02         0.01         0.00           KU23DD005         42         Phylike         0.01         0.01         0.01         0.01           KU23DD005         44         Phylike         0.01         0.02         0.01         0.01           KU23DD005         44         Phylike         0.16         0.01         0.01         0.02         0.04           KU23DD005         50         52         Phylike         0.16         0.01         0.02           KU23DD005         52         54         Phylike         0.16         0.02         0.04           KU23DD005         52         5                                                                                                                                                                                                                | KU23DD005 | 24    | 26    | Phyllite  | 0.31   | 0.00    | 0.01    | KU23DD005 | 92    | 93    | Fault     | 0.19   | р       | р       |
| KU23DD005         30         32         Phyllite         0.01         0.00           KU23DD005         32         34         Phyllite         0.18         0.01         0.01           KU23DD005         34         36         Phyllite         0.02         0.01         0.00           KU23DD005         38         40         Phyllite         0.02         0.01         0.00           KU23DD005         38         40         Phyllite         0.01         0.01         0.01           KU23DD005         44         42         Phyllite         0.02         0.01         0.01           KU23DD005         42         44         Phyllite         0.01         0.01         0.01           KU23DD005         42         44         Phyllite         0.01         0.01         0.01           KU23DD005         42         44         Phyllite         0.16         0.01         0.01           KU23DD005         50         52         Phyllite         0.26         0.02         0.04           KU23DD005         54         58         Phyllite         0.16         0.02         0.41           KU23DD005         56         58         Phyllite                                                                                                                                                                                                                   | KU23DD005 | 26    | 28    | Phyllite  | 0.12   | 0.01    | 0.00    | KU23DD005 | 93    | 94    | Phyllite  | 0.04   | р       | р       |
| KU23DD005         32         34         Phyllite         0.18         0.01         0.01           KU23DD005         34         36         Phyllite         0.02         0.01         0.00           KU23DD005         36         38         Phyllite         0.02         0.01         0.01           KU23DD005         38         40         Phyllite         0.01         0.01         0.01           KU23DD005         38         40         Phyllite         0.01         0.01         0.01           KU23DD005         44         46         Phyllite         0.11         0.01         0.01           KU23DD005         44         46         Phyllite         0.11         0.01         0.01           KU23DD005         44         46         Phyllite         0.16         0.01         0.01           KU23DD005         44         46         Phyllite         0.16         0.01         0.01           KU23DD005         50         52         Phyllite         0.16         0.02         0.01           KU23DD005         54         56         Phyllite         0.16         0.02         0.21           KU23DD005         54         66 <t< td=""><td>KU23DD005</td><td>28</td><td>30</td><td>Phyllite</td><td>0.04</td><td>0.01</td><td>0.00</td><td>KU23DD005</td><td>94</td><td>95</td><td>Phyllite</td><td>0.03</td><td>р</td><td>р</td></t<>             | KU23DD005 | 28    | 30    | Phyllite  | 0.04   | 0.01    | 0.00    | KU23DD005 | 94    | 95    | Phyllite  | 0.03   | р       | р       |
| KU23DD005         34         36         Phyllite         0.02         0.01         0.00           KU23DD005         36         38         Phyllite         0.05         0.01         0.00           KU23DD005         36         40         Phyllite         0.01         0.01         0.01           KU23DD005         34         40         Phyllite         0.01         0.01         0.01           KU23DD005         42         44         Phyllite         0.01         0.01         0.01           KU23DD005         44         46         Phyllite         0.11         0.02         0.01           KU23DD005         44         46         Phyllite         0.16         0.01         0.01           KU23DD005         46         48         Phyllite         0.16         0.01         0.01           KU23DD005         50         52         Phyllite         0.26         0.02         0.04           KU23DD005         54         56         Phyllite         0.16         0.02         0.02           KU23DD005         54         56         Phyllite         0.60         0.02         0.02           KU23DD005         54         66 <t< td=""><td>KU23DD005</td><td>30</td><td>32</td><td>Phyllite</td><td>0.02</td><td>0.01</td><td>0.00</td><td>KU23DD005</td><td>95</td><td>96.4</td><td>Phyllite</td><td>0.03</td><td>р</td><td>р</td></t<>           | KU23DD005 | 30    | 32    | Phyllite  | 0.02   | 0.01    | 0.00    | KU23DD005 | 95    | 96.4  | Phyllite  | 0.03   | р       | р       |
| KU23DD005         S6         S8         Phyllite         0.05         0.01         0.00           KU23DD005         38         40         Phyllite         0.01         0.01         0.00           KU23DD005         40         42         Phyllite         0.02         0.01         0.01           KU23DD005         44         46         Phyllite         0.01         0.01         0.01           KU23DD005         44         46         Phyllite         0.01         0.01         0.01           KU23DD005         44         46         Phyllite         0.16         0.01         0.01           KU23DD005         48         50         Phyllite         0.22         0.01         0.01           KU23DD005         50         52         Phyllite         0.22         0.01         0.04           KU23DD005         54         56         Phyllite         0.17         0.02         0.12           KU23DD005         56         58         Phyllite         0.11         0.02         0.21           KU23DD005         56         58         Phyllite         0.11         0.02         0.21           KU23DD005         56         58 <t< td=""><td>KU23DD005</td><td>32</td><td>34</td><td>Phyllite</td><td>0.18</td><td>0.01</td><td>0.01</td><td>KU23DD005</td><td>96.4</td><td>97.4</td><td>Phyllite</td><td>0.05</td><td>р</td><td>р</td></t<>         | KU23DD005 | 32    | 34    | Phyllite  | 0.18   | 0.01    | 0.01    | KU23DD005 | 96.4  | 97.4  | Phyllite  | 0.05   | р       | р       |
| KU23DD005         38         40         Phylite         0.01         0.01         0.01           KU23DD005         40         42         Phylite         0.02         0.01         0.01           KU23DD005         42         44         Phylite         0.01         0.01         0.01           KU23DD005         44         46         Phylite         0.01         0.02         0.01           KU23DD005         46         48         Phylite         0.02         0.01         0.01           KU23DD005         46         48         Phylite         0.16         0.01         0.01           KU23DD005         54         50         Phylite         0.22         0.01         0.01           KU23DD005         52         54         Phylite         0.17         0.02         0.12           KU23DD005         52         54         Phylite         0.17         0.02         0.12           KU23DD005         54         56         Phylite         0.17         0.02         0.12           KU23DD005         54         58         Phylite         0.16         0.17         0.18           KU23DD005         54         58         Phylite </td <td>KU23DD005</td> <td>34</td> <td>36</td> <td>Phyllite</td> <td>0.02</td> <td>0.01</td> <td>0.00</td> <td>KU23DD005</td> <td>97.4</td> <td>97.9</td> <td>Phyllite</td> <td>0.04</td> <td>р</td> <td>р</td> | KU23DD005 | 34    | 36    | Phyllite  | 0.02   | 0.01    | 0.00    | KU23DD005 | 97.4  | 97.9  | Phyllite  | 0.04   | р       | р       |
| KU23D0005         40         42         Phyllite         0.01         0.01         0.01           KU23D0005         42         44         Phyllite         0.01         0.01         0.01           KU23D0005         44         46         Phyllite         0.01         0.01         0.01           KU23D0005         46         48         Phyllite         0.16         0.01         0.01           KU23D0005         48         50         Phyllite         0.22         0.01         0.01           KU23D0005         52         54         Phyllite         0.22         0.01         0.02           KU23D0005         50         52         Phyllite         0.22         0.01         0.02           KU23D0005         50         52         Phyllite         0.17         0.02         0.12           KU23D0005         54         56         Phyllite         0.17         0.02         0.02           KU23D0005         56         58         Phyllite         0.16         0.02         0.02           KU23D0005         60         62         Phyllite         0.62         0.62         0.62           KU23D0005         64         Phyllite                                                                                                                                                                                                                 | KU23DD005 | 36    | 38    | Phyllite  | 0.05   | 0.01    | 0.00    | KU23DD005 | 97.9  | 98.3  | Porphyry  | 0.03   | р       | р       |
| KU23DD005         44         Phyllite         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.02         0.01         KU23DD005         100.9         Phyllite         0.12         p         p           KU23DD005         44         46         Phyllite         0.16         0.01         0.01         0.01         0.01         0.01         0.01         KU23DD005         100.9         Phyllite         0.32         p         p           KU23DD005         48         50         Phyllite         0.26         0.02         0.04         KU23DD005         103         104         Phyllite         0.16         p         p         p           KU23DD005         52         54         Phyllite         0.17         0.02         0.11         KU23DD005         106.4         107.1         Porphylite         0.10         p         p         p           KU23DD005         54         56         Phyllite         0.11         0.02         0.02         10.14         10.4         10.4         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1         10.1                                                                                                                                                            | KU23DD005 | 38    | 40    | Phyllite  | 0.01   | 0.01    | 0.00    | KU23DD005 | 98.3  | 99.2  | Phyllite  | 0.11   | р       | р       |
| KU23DD005         44         46         Phyllite         0.01         0.02         0.01           KU23DD005         46         48         Phyllite         0.16         0.01         0.01           KU23DD005         46         48         Phyllite         0.26         0.02         0.04           KU23DD005         50         52         Phyllite         0.26         0.02         0.04           KU23DD005         50         52         Phyllite         0.17         0.02         0.14           KU23DD005         54         56         Phyllite         0.17         0.02         0.12           KU23DD005         54         56         Phyllite         0.17         0.02         0.12           KU23DD005         56         58         Phyllite         0.11         0.03         0.02           KU23DD005         56         58         Phyllite         0.60         0.02         0.52           KU23DD005         56         58         Phyllite         0.60         0.02         0.52           KU23DD005         66         68         Phyllite         0.60         0.02         0.22           KU23DD005         66         68 <t< td=""><td>KU23DD005</td><td>40</td><td>42</td><td>Phyllite</td><td>0.02</td><td>0.01</td><td>0.01</td><td>KU23DD005</td><td>99.2</td><td>100.5</td><td>Phyllite</td><td>0.41</td><td>р</td><td>р</td></t<>        | KU23DD005 | 40    | 42    | Phyllite  | 0.02   | 0.01    | 0.01    | KU23DD005 | 99.2  | 100.5 | Phyllite  | 0.41   | р       | р       |
| KU23DD005         46         48         Phyllite         0.01         0.01           KU23DD005         48         50         Phyllite         0.26         0.02         0.04           KU23DD005         52         52         Phyllite         0.02         0.01         0.04           KU23DD005         52         54         Phyllite         0.17         0.02         0.14           KU23DD005         52         54         Phyllite         0.17         0.02         0.12           KU23DD005         56         58         Phyllite         0.16         0.02         0.04           KU23DD005         56         58         Phyllite         0.11         0.33         0.02           KU23DD005         56         58         Phyllite         0.66         0.02         0.55           KU23DD005         60         62         Phyllite         0.66         0.02         0.55           KU23DD005         66         68         Phyllite         0.67         0.01         0.55           KU23DD005         66         68         Phyllite         0.68         0.02         0.02           KU23DD005         70         72         Porphyry                                                                                                                                                                                                                   | KU23DD005 | 42    | 44    | Phyllite  | 0.01   | 0.01    | 0.01    | KU23DD005 | 100.5 | 100.9 | Phyllite  | 0.12   | р       | р       |
| KU23DD005         48         50         Phylite         0.26         0.02         0.04           KU23DD005         50         52         Phylite         0.02         0.01         0.04           KU23DD005         50         52         Phylite         0.17         0.02         0.14           KU23DD005         52         54         Phylite         0.17         0.02         0.14           KU23DD005         52         54         Phylite         0.16         0.02         0.04           KU23DD005         56         58         Phylite         0.11         0.03         0.02           KU23DD005         56         58         Phylite         0.16         0.02         0.04           KU23DD005         56         58         Phylite         0.16         0.02         0.05           KU23DD005         60         62         Phylite         0.05         0.01         0.05           KU23DD005         64         66         Phylite         0.04         0.03         0.01           KU23DD005         66         68         Phylite         0.04         0.03         0.01           KU23DD005         70         72         Porphyry<                                                                                                                                                                                                                | KU23DD005 | 44    | 46    | Phyllite  | 0.01   | 0.02    | 0.01    | KU23DD005 | 100.9 | 102   | Phyllite  | 0.23   | р       | р       |
| KU23DD005         S0         S2         Phyllite         0.02         0.01         0.04           KU23DD005         S2         S4         Phyllite         0.17         0.02         0.14           KU23DD005         S2         S4         Phyllite         0.17         0.02         0.14           KU23DD005         S4         S6         Phyllite         0.66         0.02         0.04           KU23DD005         S6         S8         Phyllite         0.11         0.03         0.02           KU23DD005         S6         S8         Phyllite         0.11         0.03         0.02           KU23DD005         S6         S8         Phyllite         0.11         0.03         0.02           KU23DD005         S6         S8         Phyllite         0.06         0.02         0.05           KU23DD005         S6         S6         Phyllite         0.06         0.02         0.02           KU23DD005         G6         S6         Phyllite         0.08         0.02         0.02           KU23DD005         G6         S6         Phyllite         0.08         0.02         0.01           KU23DD005         G6         S6 <t< td=""><td>KU23DD005</td><td>46</td><td>48</td><td>Phyllite</td><td>0.16</td><td>0.01</td><td>0.01</td><td>KU23DD005</td><td>102</td><td>103</td><td>Phyllite</td><td>0.32</td><td>р</td><td>р</td></t<>           | KU23DD005 | 46    | 48    | Phyllite  | 0.16   | 0.01    | 0.01    | KU23DD005 | 102   | 103   | Phyllite  | 0.32   | р       | р       |
| KU23DD005         S2         S4         Phyllite         0.17         0.02         0.12           KU23DD005         S2         S4         Phyllite         0.60         0.02         0.04           KU23DD005         S4         S6         Phyllite         0.10         0.02         0.04           KU23DD005         S6         S8         Phyllite         0.11         0.03         0.02           KU23DD005         S6         S8         Phyllite         0.06         0.02         0.05           KU23DD005         S6         S8         Phyllite         0.06         0.02         0.05           KU23DD005         G6         G2         Phyllite         0.06         0.02         0.05           KU23DD005         G6         G2         Phyllite         0.06         0.02         0.02           KU23DD005         G6         G4         Phyllite         0.08         0.02         0.01           KU23DD005         G6         G8         Phyllite         0.08         0.02         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         74         76 <t< td=""><td>KU23DD005</td><td>48</td><td>50</td><td>Phyllite</td><td>0.26</td><td>0.02</td><td>0.04</td><td>KU23DD005</td><td>103</td><td>104</td><td>Phyllite</td><td>0.16</td><td>р</td><td>р</td></t<>           | KU23DD005 | 48    | 50    | Phyllite  | 0.26   | 0.02    | 0.04    | KU23DD005 | 103   | 104   | Phyllite  | 0.16   | р       | р       |
| KU23DD005         54         56         Phyllite         0.06         0.02         0.04           KU23DD005         54         56         Phyllite         0.11         0.03         0.02           KU23DD005         58         60         Phyllite         0.16         0.02         0.05           KU23DD005         58         60         Phyllite         0.06         0.02         0.05           KU23DD005         58         60         Phyllite         0.05         0.01         0.05           KU23DD005         62         64         Phyllite         0.08         0.02         0.02           KU23DD005         64         66         Phyllite         0.08         0.02         0.01           KU23DD005         64         68         Phyllite         0.08         0.02         0.01           KU23DD005         68         70         Phyllite         0.08         0.02         0.01           KU23DD005         72         74         Phyllite         0.01         0.01           KU23DD005         76         77.1         Phyllite         0.02         0.02           KU23DD005         76         77.1         Phyllite         0.23                                                                                                                                                                                                               | KU23DD005 | 50    | 52    | Phyllite  | 0.02   | 0.01    | 0.04    | KU23DD005 | 104   | 105.1 | Phyllite  | 0.10   | р       | р       |
| KU23DD005         56         58         Phyllite         0.11         0.03         0.02           KU23DD005         58         60         Phyllite         0.06         0.02         0.05           KU23DD005         58         60         Phyllite         0.06         0.02         0.05           KU23DD005         60         62         Phyllite         0.06         0.02         0.05           KU23DD005         64         64         Phyllite         0.08         0.02         0.02           KU23DD005         64         66         Phyllite         0.08         0.02         0.01           KU23DD005         64         66         Phyllite         0.08         0.02         0.01           KU23DD005         66         68         Phyllite         0.08         0.02         0.01           KU23DD005         66         68         Phyllite         0.03         0.01         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         74         76         Phyllite         0.03         0.02         0.02           KU23DD005         71         78.4                                                                                                                                                                                                                     | KU23DD005 | 52    | 54    | Phyllite  | 0.17   | 0.02    | 0.12    | KU23DD005 | 105.1 | 106.4 | BMC Vein  | 0.05   | р       | р       |
| KU23DD005         58         60         Phyllite         0.06         0.02         0.05           KU23DD005         60         62         Phyllite         0.05         0.01         0.05           KU23DD005         60         62         Phyllite         0.05         0.01         0.05           KU23DD005         62         64         Phyllite         0.08         0.02         0.02           KU23DD005         62         64         Phyllite         0.04         0.03         0.01           KU23DD005         66         68         Phyllite         0.04         0.03         0.01           KU23DD005         66         68         Phyllite         0.02         0.01         KU23DD005         110         111         Phyllite         0.06         p           KU23DD005         66         68         Phyllite         0.02         0.01         KU23DD005         112         113         Phyllite         0.07         p         p           KU23DD005         70         72         Porphyry         0.16         0.01         0.01         KU23DD005         114         115         Phyllite         0.06         p         p         p                                                                                                                                                                                                           | KU23DD005 | 54    | 56    | Phyllite  | 0.06   | 0.02    | 0.04    | KU23DD005 | 106.4 | 107.1 | Porphyry  | 0.10   | р       | р       |
| KU23DD005         60         62         Phyllite         0.05         0.01         0.05           KU23DD005         62         64         Phyllite         0.08         0.02         0.02           KU23DD005         62         64         Phyllite         0.08         0.02         0.02           KU23DD005         64         66         Phyllite         0.04         0.03         0.01           KU23DD005         66         68         Phyllite         0.08         0.02         0.01           KU23DD005         66         68         Phyllite         0.02         0.01         KU23DD005         110         111         Phyllite         0.06         p           KU23DD005         68         70         Phyllite         0.27         0.3         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         74         76         Phyllite         0.03         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.02           KU23DD005         76.         77.1         Phyllite         0.03         0.02                                                                                                                                                                                                      | KU23DD005 | 56    | 58    | Phyllite  | 0.11   | 0.03    | 0.02    | KU23DD005 | 107.1 | 108   | Porphyry  | 0.02   | р       | р       |
| KU23DD005         62         64         Phyllite         0.08         0.02         0.02           KU23DD005         64         66         Phyllite         0.04         0.03         0.01           KU23DD005         64         66         Phyllite         0.04         0.03         0.01           KU23DD005         66         68         Phyllite         0.08         0.02         0.01           KU23DD005         66         68         Phyllite         0.27         0.03         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         72         74         Phyllite         0.03         0.02           KU23DD005         74         76         Phyllite         0.03         0.02           KU23DD005         76         77.1         Phyllite         0.03         0.02           KU23DD005         71.1         78.4         Fault         0.23         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.26           KU23DD005         77.1         78.4         Fault         0.26         0.04                                                                                                                                                                                                              | KU23DD005 | 58    | 60    | Phyllite  | 0.06   | 0.02    | 0.05    | KU23DD005 | 108   | 109   | Porphyry  | 0.03   | р       | р       |
| KU23DD005         64         66         Phyllite         0.04         0.03         0.01           KU23DD005         66         68         Phyllite         0.08         0.02         0.01           KU23DD005         66         68         Phyllite         0.02         0.01           KU23DD005         68         70         Phyllite         0.27         0.03         0.01           KU23DD005         68         70         Phyllite         0.27         0.03         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         72         74         Phyllite         0.03         0.02           KU23DD005         74         76         Phyllite         0.03         0.02           KU23DD005         76         77.1         Phyllite         0.03         0.02         0.02           KU23DD005         76.         77.1         Phyllite         0.03         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.26           KU23DD005         77.1         78.4         Fault         0.26         0.04                                                                                                                                                                                                            | KU23DD005 | 60    | 62    | Phyllite  | 0.05   | 0.01    | 0.05    | KU23DD005 | 109   | 110   | Phyllite  | 0.08   | р       | р       |
| KU23DD005         66         68         Phyllite         0.08         0.02         0.01           KU23DD005         68         70         Phyllite         0.27         0.03         0.01           KU23DD005         68         70         Phyllite         0.27         0.03         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         72         74         Phyllite         0.03         0.02           KU23DD005         72         74         Phyllite         0.03         0.02           KU23DD005         74         76         Phyllite         0.03         0.02         0.02           KU23DD005         76         77.1         Phyllite         0.03         0.02         0.02           KU23DD005         76         77.1         Phyllite         0.03         0.02         0.02           KU23DD005         76.4         79.05         Fault         0.23         0.02         0.26           KU23DD005         78.4         79.05         Fault         0.13         0.01         0.02           KU23DD005         79.5         80         Fault         0.13                                                                                                                                                                                                            | KU23DD005 | 62    | 64    | Phyllite  | 0.08   | 0.02    | 0.02    | KU23DD005 | 110   | 111   | Phyllite  | 0.09   | р       | р       |
| KU23DD005         68         70         Phyllite         0.27         0.03         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         72         74         Phyllite         0.08         0.03         0.02           KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         76         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.26           KU23DD005         78.4         79.05         Fault         0.26         0.04         0.01           KU23DD005         79.05         80         Fault         0.16         0.02         0.02           KU23DD005         120         121                                                                                                                                                                                                                | KU23DD005 | 64    | 66    | Phyllite  | 0.04   | 0.03    | 0.01    | KU23DD005 | 111   | 112   | Phyllite  | 0.06   | р       | р       |
| KU23DD005         70         72         Porphyry         0.16         0.01         0.01           KU23DD005         72         74         Phyllite         0.08         0.03         0.02           KU23DD005         72         74         Phyllite         0.08         0.03         0.02           KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         76         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.02           KU23DD005         78.4         79.05         Fault         0.26         0.04         0.01           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         119         120         Skarn         0.11         0.10           KU23DD005         80.         81.1         Fault                                                                                                                                                                                                               | KU23DD005 | 66    | 68    | Phyllite  | 0.08   | 0.02    | 0.01    | KU23DD005 | 112   | 113   | Phyllite  | 0.07   | р       | р       |
| KU23DD005         72         74         Phyllite         0.08         0.03         0.02           KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         76         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.26           KU23DD005         77.1         78.4         Fault         0.26         0.04         0.01           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         120         121         Skarn         0.14         0.10           KU23DD005         80         81.1         Fault                                                                                                                                                                                                                 | KU23DD005 | 68    | 70    | Phyllite  | 0.27   | 0.03    | 0.01    | KU23DD005 | 113   | 114   | Phyllite  | 0.07   | р       | р       |
| KU23DD005         74         76         Phyllite         0.03         0.01         0.06           KU23DD005         76         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         76         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         76.         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.26           KU23DD005         78.4         79.05         Fault         0.26         0.04         0.01           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         119         120         Skarn         0.11         0.10           KU23DD005         79.05         80         Fault         0.13         0.02         KU23DD005         120         121         Skarn         0.17         0.10         0.00           KU23DD005         80         81.1         Fault         0.16         0.02         0.02         KU23DD005         121         121.8         Skarn         0.54         0.06         0.                                                                                                                                                                                       | KU23DD005 | 70    | 72    | Porphyry  | 0.16   | 0.01    | 0.01    | KU23DD005 | 114   | 115   | Phyllite  | 0.09   | р       | р       |
| KU23DD005         76         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         76         77.1         Phyllite         0.09         0.02         0.02           KU23DD005         77.1         78.4         Fault         0.23         0.02         0.26           KU23DD005         77.1         78.4         Fault         0.26         0.04         0.01           KU23DD005         78.4         79.05         Fault         0.26         0.04         0.01           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         110         120         Skarn         0.11         0.10           KU23DD005         79.05         80         Fault         0.16         0.02         0.02           KU23DD005         120         121         Skarn         0.14         0.10           KU23DD005         80         81.1         Fault         0.16         0.02         0.02                                                                                                                                                                                                                                                                                                                                                                                        | KU23DD005 | 72    | 74    | Phyllite  | 0.08   | 0.03    | 0.02    | KU23DD005 | 115   | 116   | Phyllite  | 0.06   | р       | р       |
| KU23DD005         77.1         78.4         Fault         0.23         0.02         0.26           KU23DD005         78.4         79.05         Fault         0.26         0.04         0.01           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         79.05         80         Fault         0.13         0.01         0.02           KU23DD005         110         120         Skarn         0.11         0.10           KU23DD005         120         121         Skarn         0.17         0.10           KU23DD005         80         81.1         Fault         0.16         0.02         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KU23DD005 | 74    | 76    | Phyllite  | 0.03   | 0.01    | 0.06    | KU23DD005 | 116   | 117   | Phyllite  | 0.05   | р       | р       |
| KU23DD005         78.4         79.05         Fault         0.26         0.04         0.01         KU23DD005         119         120         Skarn         0.11         0.10         0.00           KU23DD005         79.05         80         Fault         0.13         0.01         0.02         KU23DD005         120         121         Skarn         0.17         0.10         0.00           KU23DD005         80         81.1         Fault         0.16         0.02         0.02         KU23DD005         121         121.8         Skarn         0.54         0.06         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KU23DD005 | 76    | 77.1  | Phyllite  | 0.09   | 0.02    | 0.02    | KU23DD005 | 117   | 118.1 | Phyllite  | 0.07   | р       | р       |
| KU23DD005         79.05         80         Fault         0.13         0.01         0.02         KU23DD005         120         121         Skarn         0.17         0.10         0.00           KU23DD005         80         81.1         Fault         0.16         0.02         0.02         KU23DD005         121         121.8         Skarn         0.54         0.06         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | KU23DD005 | 77.1  | 78.4  | Fault     | 0.23   | 0.02    | 0.26    | KU23DD005 | 118.1 | 119   | Skarn     | 0.25   | 0.09    | 0.00    |
| KU23DD005         80         81.1         Fault         0.16         0.02         0.02         KU23DD005         121         121.8         Skarn         0.54         0.06         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KU23DD005 | 78.4  | 79.05 | Fault     | 0.26   | 0.04    | 0.01    | KU23DD005 | 119   | 120   | Skarn     | 0.11   | 0.10    | 0.00    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KU23DD005 | 79.05 | 80    | Fault     | 0.13   | 0.01    | 0.02    | KU23DD005 | 120   | 121   | Skarn     | 0.17   | 0.10    | 0.00    |
| KU23DD005 81.1 81.9 Fault 0.17 0.04 0.01 KU23DD005 121.8 123 Skarn 0.14 0.10 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KU23DD005 | 80    | 81.1  | Fault     | 0.16   | 0.02    | 0.02    | KU23DD005 | 121   | 121.8 | Skarn     | 0.54   | 0.06    | 0.01    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KU23DD005 | 81.1  | 81.9  | Fault     | 0.17   | 0.04    | 0.01    | KU23DD005 | 121.8 | 123   | Skarn     | 0.14   | 0.10    | 0.02    |

| Hole_ID   | From  | То       | Lithology | Au g/t | Cu<br>% | Zn<br>% |   | Hole_ID   | From | То  | Lithology | Au g/t | Cu<br>% | Zn<br>% |
|-----------|-------|----------|-----------|--------|---------|---------|---|-----------|------|-----|-----------|--------|---------|---------|
| KU23DD005 | 123   | 124      | Skarn     | 0.28   | 0.20    | 0.08    |   | KU23DD005 | 166  | 167 | Skarn     | 1.73   | 0.09    | 2.50    |
| KU23DD005 | 124   | 125      | Skarn     | 0.77   | 0.10    | 0.02    |   | KU23DD005 | 167  | 168 | Skarn     | 16.20  | 0.24    | 0.29    |
| KU23DD005 | 125   | 126      | Skarn     | 0.76   | 0.09    | 0.01    |   | KU23DD005 | 168  | 169 | Skarn     | 3.92   | 0.15    | 0.02    |
| KU23DD005 | 126   | 127      | Skarn     | 1.51   | 0.11    | 0.07    |   | KU23DD005 | 169  | 170 | Skarn     | 0.63   | 0.06    | 0.01    |
| KU23DD005 | 127   | 128      | Skarn     | 1.57   | 0.11    | 0.06    |   | KU23DD005 | 170  | 171 | Skarn     | 2.40   | 0.12    | 0.05    |
| KU23DD005 | 128   | 129      | Skarn     | 1.78   | 0.07    | 0.04    |   | KU23DD005 | 171  | 172 | Skarn     | 1.97   | 0.05    | 0.01    |
| KU23DD005 | 129   | 130      | Skarn     | 1.35   | 0.10    | 0.03    |   | KU23DD005 | 172  | 173 | Skarn     | 1.11   | 0.03    | 0.00    |
| KU23DD005 | 130   | 131      | Skarn     | 0.29   | 0.03    | 0.01    |   | KU23DD005 | 173  | 174 | Skarn     | 0.37   | 0.00    | 0.00    |
| KU23DD005 | 131   | 132      | Skarn     | 0.56   | 0.01    | 0.01    |   | KU23DD005 | 174  | 175 | Skarn     | 2.71   | 0.00    | 0.01    |
| KU23DD005 | 132   | 133      | Skarn     | 0.89   | 0.07    | 0.03    |   | KU23DD005 | 175  | 176 | Skarn     | 1.79   | 0.02    | 0.06    |
| KU23DD005 | 133   | 134      | Skarn     | 0.75   | 0.02    | 0.02    |   | KU23DD005 | 176  | 177 | Skarn     | 5.46   | 0.44    | 1.22    |
| KU23DD005 | 134   | 135      | Skarn     | 0.85   | 0.03    | 0.02    |   | KU23DD005 | 177  | 178 | Skarn     | 1.07   | 0.09    | 0.97    |
| KU23DD005 | 135   | 136      | Skarn     | 5.04   | 0.08    | 0.03    |   | KU23DD005 | 178  | 179 | Marble    | 0.66   | 0.07    | 1.11    |
| KU23DD005 | 136   | 137      | Skarn     | 2.34   | 0.03    | 0.02    |   | KU23DD005 | 179  | 180 | Marble    | 4.42   | 0.47    | 3.39    |
| KU23DD005 | 137   | 138      | Skarn     | 1.12   | 0.02    | 0.02    |   | KU23DD005 | 180  | 181 | Marble    | 0.21   | 0.01    | 0.23    |
| KU23DD005 | 138   | 139.4    | Skarn     | 2.41   | 0.03    | 0.02    |   | KU23DD005 | 181  | 182 | Marble    | 0.03   | 0.01    | 0.17    |
| KU23DD005 | 139.4 | 140      | Skarn     | 2.32   | 0.03    | 0.03    |   | KU23DD005 | 182  | 183 | Marble    | 0.02   | 0.01    | 0.09    |
| KU23DD005 | 140   | 141      | Skarn     | 1.85   | 0.02    | 0.01    |   | KU23DD005 | 183  | 184 | Marble    | 0.14   | 0.01    | 0.05    |
| KU23DD005 | 141   | 142      | Skarn     | 8.80   | 0.04    | 0.01    |   | KU23DD005 | 184  | 185 | Marble    | 1.23   | 0.02    | 0.29    |
| KU23DD005 | 142   | 143      | Skarn     | 1.87   | 0.01    | 0.02    |   | KU23DD005 | 185  | 186 | Marble    | 4.87   | 0.00    | 0.28    |
| KU23DD005 | 143   | 144      | Skarn     | 2.55   | 0.02    | 0.01    |   | KU23DD005 | 186  | 187 | Marble    | 0.03   | 0.00    | 0.01    |
| KU23DD005 | 144   | 145      | Skarn     | 1.49   | 0.04    | 0.02    |   | KU23DD005 | 187  | 188 | Marble    | 0.03   | 0.00    | 0.07    |
| KU23DD005 | 145   | 146      | Skarn     | 3.49   | 0.07    | 0.02    |   | KU23DD005 | 188  | 189 | Marble    | 0.68   | 0.06    | 0.27    |
| KU23DD005 | 146   | 147      | Skarn     | 1.05   | 0.04    | 0.01    |   | KU23DD005 | 189  | 190 | Marble    | 0.33   | 0.01    | 0.02    |
| KU23DD005 | 147   | 148      | Skarn     | 2.62   | 0.02    | 0.03    |   | KU23DD005 | 190  | 191 | Marble    | 0.15   | 0.00    | 0.04    |
| KU23DD005 | 148   | 149      | Skarn     | 1.71   | 0.07    | 0.02    |   | KU23DD005 | 191  | 192 | Marble    | 0.05   | 0.00    | 0.02    |
| KU23DD005 | 149   | 150      | Skarn     | 1.87   | 0.08    | 1.20    |   | KU23DD005 | 192  | 193 | Marble    | 0.03   | 0.00    | 0.02    |
| KU23DD005 | 150   | 151.4    | Skarn     | 0.76   | 0.01    | 0.09    |   | KU23DD005 | 193  | 194 | Marble    | 0.04   | 0.00    | 0.01    |
| KU23DD005 | 151.4 | 152.4    | Skarn     | 2.69   | 0.18    | 0.92    |   | KU23DD005 | 194  | 195 | Marble    | 0.21   | 0.00    | 0.02    |
| KU23DD005 | 152.4 | 153.3    | Skarn     | 1.11   | 0.18    | 0.91    |   | KU23DD005 | 195  | 196 | Marble    | 0.13   | 0.00    | 0.01    |
| KU23DD005 | 153.3 | 154      | Skarn     | 1.91   | 0.03    | 0.32    |   | KU23DD005 | 196  | 198 | Marble    | 0.04   | р       | р       |
| KU23DD005 | 154   | 155      | Skarn     | 2.43   | 0.03    | 0.29    |   | KU23DD005 | 198  | 200 | Marble    | 0.09   | р       | р       |
| KU23DD005 | 155   | 156      | Skarn     | 0.40   | 0.05    | 2.90    |   | KU23DD005 | 200  | 202 | Marble    | 0.10   | р       | р       |
| KU23DD005 | 156   | 157      | Skarn     | 0.38   | 0.03    | 0.48    |   | KU23DD005 | 202  | 204 | Marble    | 0.41   | р       | р       |
| KU23DD005 | 157   | 158      | Skarn     | 0.76   | 0.07    | 0.90    |   | KU23DD005 | 204  | 206 | Marble    | 0.17   | р       | р       |
| KU23DD005 | 158   | 159      | Skarn     | 1.14   | 0.17    | 0.87    |   | KU23DD005 | 206  | 208 | Marble    | 0.09   | р       | р       |
| KU23DD005 | 159   | 160      | Skarn     | 0.88   | 0.06    | 0.31    |   | KU23DD005 | 208  | 210 | Marble    | 0.05   | р       | р       |
| KU23DD005 | 160   | 161      | Skarn     | 1.46   | 0.22    | 0.25    |   | KU23DD005 | 210  | 212 | Marble    | 0.07   | р       | р       |
| KU23DD005 | 161   | 162      | Skarn     | 1.23   | 0.11    | 0.22    |   | KU23DD005 | 212  | 214 | Marble    | 0.03   | р       | р       |
| KU23DD005 | 162   | 163      | Skarn     | 1.41   | 0.29    | 0.36    |   | KU23DD005 | 214  | 216 | Marble    | 0.10   | р       | р       |
| KU23DD005 | 163   | 164      | Skarn     | 0.34   | 0.14    | 0.79    |   | KU23DD005 | 216  | 218 | Marble    | 0.16   | р       | р       |
| KU23DD005 | 164   | 165      | Skarn     | 0.76   | 0.09    | 2.37    |   | KU23DD005 | 218  | 220 | Marble    | 0.14   | р       | р       |
| KU23DD005 | 165   | 166      | Skarn     | 0.77   | 0.08    | 1.47    |   | KU23DD005 | 220  | 222 | Marble    | 0.04   | р       | р       |
|           |       | <u> </u> | I         | 1      | I       | L       | J | l         | I    | I   |           | I      | I       | L       |

| e_ID      | From | То    | Lithology | Au g/t | Cu<br>% | Zn<br>% |
|-----------|------|-------|-----------|--------|---------|---------|
| (U23DD005 | 222  | 224   | Marble    | 0.34   | p       | p       |
| KU23DD005 | 224  | 226   | Marble    | 0.05   | р       | р       |
| KU23DD005 | 226  | 228   | Marble    | 0.01   | р       | р       |
| KU23DD005 | 228  | 230   | Marble    | 0.11   | р       | р       |
| KU23DD005 | 230  | 232   | Marble    | 0.02   | р       | р       |
| KU23DD005 | 232  | 234   | Marble    | 0.21   | р       | р       |
| KU23DD005 | 234  | 236   | Marble    | 0.01   | р       | р       |
| KU23DD005 | 236  | 238   | Marble    | 0.01   | р       | р       |
| KU23DD005 | 238  | 240   | Marble    | 0.01   | р       | р       |
| KU23DD005 | 240  | 242   | Marble    | 0.05   | р       | р       |
| KU23DD005 | 242  | 244   | Marble    | 0.13   | р       | р       |
| KU23DD005 | 244  | 246   | Marble    | 0.01   | р       | р       |
| KU23DD005 | 246  | 248   | Marble    | <0.005 | р       | р       |
| KU23DD005 | 248  | 250   | Marble    | 0.02   | р       | р       |
| KU23DD005 | 250  | 252   | Marble    | 0.02   | р       | р       |
| KU23DD005 | 252  | 254   | Marble    | 0.03   | р       | р       |
| KU23DD005 | 254  | 256   | Marble    | 0.02   | р       | р       |
| KU23DD005 | 256  | 258   | Marble    | 1.24   | р       | р       |
| KU23DD005 | 258  | 260   | Marble    | 0.03   | р       | р       |
| KU23DD005 | 260  | 262   | Marble    | 0.05   | р       | р       |
| KU23DD005 | 262  | 264   | Marble    | 0.12   | р       | р       |
| KU23DD005 | 264  | 266   | Marble    | 0.02   | р       | р       |
| KU23DD005 | 266  | 268   | Marble    | 0.29   | р       | р       |
| KU23DD005 | 268  | 269.2 | Marble    | 0.02   | 0.00    | 0.01    |

**Table 2**: Diamond drill hole lithology and gold, copper and zinc assays for the Kusi Prospect hole KU23DD005, contained within this report. Note p=results pending, BMC Vein = base metal carbonate vein.

# JORC Code, 2012 Edition – Table 1- Ono Licence EL2665 (Kusi Project)

## Section 1 Sampling Techniques and Data

### (Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Diamond drilling is carried out to produce PQ, HQ and NQ core. All holes have been drilled by LCL except KSDD003, KSDD004, and KSDD007, which were drilled by PNM.</li> <li>Following verification of the integrity of stored core boxes and the core within them at the Company's core shed at Kusi, the core is logged by a geologist and marked for sampling. Following the marking of the cutting line and allocation of sample numbers, allowing for insertion of QAQC samples, the core is cut by employees in the Company's facility within the core-shed.</li> <li>Nominally core is cut in half and sampled on 1m intervals, however the interval may be reduced by the geologist to no less than 30cm.</li> <li>Samples are bagged in numbered calico sacks with a sample tag. Groups of 5 samples are bagged in a heavy-duty plastic bag, labelled, weighed and sealed, for transport.</li> <li>Transport is via helicopter to the townships of either Wau or Lae, where the samples are couriered with a commercial transport group to the Intertek (ITS) Laboratory in Lae, PNG.</li> <li>Drill sample preparation (PB05) is carried out by ITS Laboratory in Lae, PNG where the whole sample is dried (105°C), crushed and pulverised (95%,106µm). Splits are then generated for fire assay (FA50/AAS).</li> <li>Pulp samples (30g) are shipped by ITS to the ITS Laboratory in Townsville, Australia where the samples are analysed for an additional 48 elements using Four Acid ICP-OES &amp; MS package 4A/OM10.</li> </ul> |
| Drilling<br>techniques | • Drill type (eg core, reverse circulation, open-hole hammer,<br>rotary air blast, auger, Bangka, sonic, etc) and details (eg<br>core diameter, triple or standard tube, depth of diamond<br>tails, face-sampling bit or other type, whether core is<br>oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>The drilling program is a diamond drilling program using PQ, HQ, and NQ<br/>diameter core. Drilling was triple tube and was orientated via the Reflex tool and<br/>surveys undertaken every 30m using a multi-shot camera.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Criteria                                | JORC Code explanation                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Drill sample<br>recovery                | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> </ul>                                                                                         | <ul> <li>The drillers are required to meet a minimum core recovery rate of 95%.<br/>Recoveries for KU23DD005 were satisfactory.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                         | <ul> <li>Measures taken to maximise sample recovery and ensure<br/>representative nature of the samples.</li> </ul>                                                                                 | On site, a Drill Contractor employee is responsible for labelling core blocks the beginning and end depth of each drill run plus actual and expected recovery in the second |  |  |  |  |  |
|                                         | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to                                                                                    | meters. This and other field processes are audited on a daily basis by a Company employee during drill core mark up.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                         | preferential loss/gain of fine/coarse material.                                                                                                                                                     | • On receipt the core is visually verified for inconsistencies including depth labels, degree of fracturing (core breakage versus natural), lithology progression etc. If the core meets the required conditions it is cleaned, core pieces are orientated and joined, lengths and labelling are verified, and geotechnical observations made. The core box is then photographed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                         |                                                                                                                                                                                                     | Orientated sections of core are aligned and structural measurements taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                         |                                                                                                                                                                                                     | <ul> <li>Following logging, sample intervals are determined and marked up and the<br/>cutting line transferred to the core.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Logging                                 | • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | • Logging is carried out visually by the project geologists focusing on lithology, structure, alteration, veining, recovery RQD and mineralization characteristics. The level of logging is appropriate for exploration and initial resource estimation evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                         | • Whether logging is qualitative or quantitative in nature. Core                                                                                                                                    | Core is photographed following the core "mark up" stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                         | <ul> <li>(or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections</li> </ul>                                                                  | <ul> <li>Core is logged and sampled, nominally on 1m intervals respectively, but in<br/>areas of interest more detailed logging and sampling may be undertaken.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                         | logged.                                                                                                                                                                                             | No sample interval is ever less than 30cm of diamond core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                         |                                                                                                                                                                                                     | <ul> <li>On receipt of the multi-element geochemical data this is interpreted for<br/>consistency with the geologic logging.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Sub-<br>sampling                        | • If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                         | • After logging and definition of sample intervals by the geologist, the marked core is cut in half using a diamond saw in a specially designed facility on site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| techniques<br>and sample<br>preparation | <ul> <li>If non-core, whether riffled, tube sampled, rotary split, etc<br/>and whether sampled wet or dry.</li> </ul>                                                                               | Core is cut and sampled. The standard sample interval is 1m but may be varied by the geologist to reflect lithology, alteration or mineralization variations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                         | <ul> <li>For all sample types, the nature, quality and<br/>appropriateness of the sample preparation technique.</li> </ul>                                                                          | • As appropriate, half or quarter core generated for a specific sample interval is collected and bagged. The other half of the core remains in the core box as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |

| Criteria                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | <ul> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>physical archive.</li> <li>The large size (4-8kg) of individual drill samples and continuous sampling of the drill hole, provides representative samples for exploration activities.</li> <li>Field duplicates were taken to test the geological homogeneity of the mineralization and the sample sizes and procedures. Duplicate samples of drill core were obtained by cutting the reference half of the core in half again with a diamond saw, and taking one of the quarter core samples as the field duplicate sample, while leaving the other quarter core for reference. This method may introduce a certain amount of additional variance due to the difference in sample weights, and is a measure of the geological variability of the mineralization and the sample size.</li> </ul> |
| Quality of<br>assay data<br>and | • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                                                                                                                                                                                         | <ul> <li>Sample mediums were submitted to ITS laboratory in Lae for sample<br/>preparation and Au assay. Pulps are sent to ITS laboratory in Townsville,<br/>Australia for multi-element assays. ITS are ISO accredited.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| laboratory<br>tests             | <ul> <li>For geophysical tools, spectrometers, handheld XRF<br/>instruments, etc, the parameters used in determining the<br/>analysis including instrument make and model, reading<br/>times, calibrations factors applied and their derivation, etc.</li> </ul>                                                                                                                                           | • Drill samples: Gold assays were obtained using a lead collection fire assay technique (FA50/AAS) and analyses for an additional 48 elements obtained via Four Acid ICP-OES & MS package 4A/OM10. Fire assay for gold is considered a "total" assay technique. An acid (4 acid) digest is considered a total digestion technique. However, for some resistant minerals, not considered of economic                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 | Nature of quality control procedures adopted (eg standards,<br>blanks, duplicates, external laboratory checks) and whether                                                                                                                                                                                                                                                                                 | value at this time, the digestion may be partial e.g. Zr, Ti etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 | acceptable levels of accuracy (ie lack of bias) and precision have been established.                                                                                                                                                                                                                                                                                                                       | No field non-assay analysis instruments were used in the analyses reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | nave been established.                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Certified reference material (OREAS) was used for drilling QAQC control.<br/>Sample blanks and field duplicates are also inserted into the sample sequence.<br/>QAQC reference samples make up 15% of a sample batch, made up from<br/>standards, blanks and duplicates.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Geochemistry results are reviewed by the Company for indications of any<br/>significant analytical bias or preparation errors in the reported analyses.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                            | • Internal laboratory QAQC checks are also reported by the laboratory and are reviewed as part of the Company's QAQC analysis. The geochemical data is only accepted where the analyses are performed within acceptable limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Verification<br>of sampling     | • The verification of significant intersections by either                                                                                                                                                                                                                                                                                                                                                  | Digital data received is verified and validated by LCL management before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Criteria                   | JORC Code explanation                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and ,                      | independent or alternative company personnel.                                                                                                                                                                                                                | loading into the assay database.                                                                                                                                                                                                                                                      |
| assaying                   | The use of twinned holes.                                                                                                                                                                                                                                    | • Reported results are compiled by the Company's geologists and verified by the Company's database administrator and exploration manager.                                                                                                                                             |
|                            | <ul> <li>Documentation of primary data, data entry procedures, data<br/>verification, data storage (physical and electronic) protocols.</li> </ul>                                                                                                           |                                                                                                                                                                                                                                                                                       |
|                            | Discuss any adjustment to assay data.                                                                                                                                                                                                                        | • Data is stored digitally in a database which has access restricted to LCL database personnel.                                                                                                                                                                                       |
|                            |                                                                                                                                                                                                                                                              | • Pulps from the ITS Laboratory for drilling, trenching and rock chips, are returned to LCL after 3 months. LCL then store the samples in a secure lock storage container in Lae, PNG.                                                                                                |
| Location of<br>data points | <ul> <li>Accuracy and quality of surveys used to locate drill holes<br/>(collar and down-hole surveys), trenches, mine workings<br/>and other locations used in Mineral Resource estimation.</li> </ul>                                                      | • The drill hole is located using a handheld GPS using the averaging function for a minimum of 10 minutes. This has an approximate accuracy of 3-5m considered sufficient at this stage of exploration.                                                                               |
|                            | Specification of the grid system used.                                                                                                                                                                                                                       | • Downhole deviations of the drill hole are evaluated on a regular basis (30m)                                                                                                                                                                                                        |
|                            | Quality and adequacy of topographic control.                                                                                                                                                                                                                 | <ul><li>and recorded in a drill hole survey file to allow plotting in 3D.</li><li>The grid system is WGS84 UTM zones Z55S.</li></ul>                                                                                                                                                  |
|                            |                                                                                                                                                                                                                                                              | <ul> <li>Historical diamond drilling collar locations have been located on the ground<br/>and using GPS averaging function to record a point.</li> </ul>                                                                                                                              |
| Data spacing               | Data spacing for reporting of Exploration Results.                                                                                                                                                                                                           | Drill spacing is variable due to topography access.                                                                                                                                                                                                                                   |
| and<br>distribution        | <ul> <li>Whether the data spacing and distribution is sufficient to<br/>establish the degree of geological and grade continuity<br/>appropriate for the Mineral Resource and Ore Reserve<br/>estimation procedure(s) and classifications applied.</li> </ul> | • The sampling of porphyry Cu-Au mineralisation and unmineralised lithologies is<br>undertaken on 2m composites, while the skarn mineralisation is sampled on<br>nominal 1m intervals, but depending on the geologist's logging, may be down<br>to no less than 30cm of NQ half core. |
|                            | Whether sample compositing has been applied.                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |
| Orientation                | • Whether the orientation of sampling achieves unbiased                                                                                                                                                                                                      | Drill holes are preferentially located in prospective area.                                                                                                                                                                                                                           |
| of data in<br>relation to  | sampling of possible structures and the extent to which this is known, considering the deposit type.                                                                                                                                                         | • Drillholes are planned to best test the lithologies, mineralisation and structures as known, taking into account that steep topography limits alternatives for                                                                                                                      |
| geological<br>structure    | • If the relationship between the drilling orientation and the                                                                                                                                                                                               | locating holes.                                                                                                                                                                                                                                                                       |
|                            | orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed                                                                                                                                          | • Efforts were made to intercept the mineralization as perpendicular as possible, but due to topographical challenges, drilling of multiple holes from a common                                                                                                                       |

| Criteria             | JORC Code explanation                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | and reported if material.                                                | pad has been undertaken. This results in some of the mineralised intercepts occurring oblique to the target unit. Assays are reported as drill core widths, true widths are estimated to be 60% to 70% of reported value.                                                                                                                                                  |
|                      |                                                                          | <ul> <li>Exploration is at an early stage and, as such, knowledge on exact locations of<br/>mineralisation and its relation to structural boundaries is not accurately known.<br/>However, the sampling pattern is considered appropriate for the program to<br/>reasonably assess the prospectivity of known features interpreted from other<br/>data sources.</li> </ul> |
| Sample<br>security   | The measures taken to ensure sample security.                            | • Drill hole core boxes are stored on concrete platforms with lids and strapped down in a timber and wire frame.                                                                                                                                                                                                                                                           |
|                      |                                                                          | <ul> <li>On receipt at the core shed the core boxes are examined for integrity. If there are no signs of damage or violation of the boxes, they are opened, and the core is evaluated for consistency and integrity.</li> </ul>                                                                                                                                            |
|                      |                                                                          | <ul> <li>The core shed and core boxes, samples and pulps are secured in the<br/>Company core yard facility.</li> </ul>                                                                                                                                                                                                                                                     |
|                      |                                                                          | <ul> <li>Sample dispatches are secured and labelled on site. Groups of 5 samples are<br/>bagged in a heavy-duty plastic bag, labelled, weighed and sealed, for transport.</li> </ul>                                                                                                                                                                                       |
|                      |                                                                          | <ul> <li>Transport is via helicopter to the townships of Wau or Lae, where the samples<br/>are couriered with a commercial transport group to the ITS Laboratory in Lae,<br/>PNG.</li> </ul>                                                                                                                                                                               |
| Audits or<br>reviews | The results of any audits or reviews of sampling techniques<br>and data. | At this stage no audits have been undertaken.                                                                                                                                                                                                                                                                                                                              |

# Section 2 Reporting of Exploration Results - Ono Licence EL2665 (Kusi Project)

(Criteria listed in the preceding section also apply to this section.)

| Criteria             | JORC Code explanation                                                                   | Commentary                                                                                                                  |
|----------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and | Type, reference name/number, location and<br>ownership including agreements or material | <ul> <li>The Exploration Titles were validly issued as Exploration Licences pursuant to the 1992 Mining<br/>Act.</li> </ul> |
|                      | issues with third parties such as joint ventures, partnerships, overriding royalties,   | • The Exploration Licence grants its holders the exclusive right to carrying out exploration for                            |

| Criteria                                | J( | ORC Code explanation                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                   |                  |                    |              |                  |              |            |  |  |  |  |
|-----------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|--------------|------------------|--------------|------------|--|--|--|--|
| land tenure<br>status                   |    | native title interests, historical sites,<br>wilderness or national park and<br>environmental settings.<br>minerals on that land. There are no outstanding encumbrances or charges registered against<br>the Exploration Title at the National Registry. |                                                                                                                                                                                                                                                                              |                  |                    |              |                  |              |            |  |  |  |  |
|                                         | •  | The security of the tenure held at the time<br>of reporting along with any known<br>impediments to obtaining a licence to<br>operate in the area.                                                                                                        |                                                                                                                                                                                                                                                                              |                  |                    |              |                  |              |            |  |  |  |  |
| Exploration<br>done by other<br>parties | •  | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                            | • Kusi Project: Pacific Niugini Minerals Ltd (PNM) 2010-2020. Stream sampling, soils, rock chips, trenching, aeromagnetics, 8 diamond holes for 2,466.7m at Kusi Project.                                                                                                    |                  |                    |              |                  |              |            |  |  |  |  |
| Geology                                 | •  | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                            | • Kusi Project: The Kusi Project is dominated by skarn mineralisation hosted in multiple limestone units within the Owen Stanley Metamorphics. Numerous intermediate to felsic dykes/sills transect the project. Minor Intermediate Sulphidation veins have also been noted. |                  |                    |              |                  |              |            |  |  |  |  |
| Drill hole                              | ٠  | A summary of all information material to the                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                              |                  |                    |              |                  |              |            |  |  |  |  |
| Information                             |    | understanding of the exploration results<br>including a tabulation of the following<br>information for all Material drill holes:                                                                                                                         | Hole                                                                                                                                                                                                                                                                         | East_WGS84Z54    | North_WGS84Z54     | RL           | Depth            | Az<br>(grid) | Dip        |  |  |  |  |
|                                         |    | <ul> <li>easting and northing of the drill hole K</li> <li>collar</li> </ul>                                                                                                                                                                             | KU23DD001<br>KU23DD002                                                                                                                                                                                                                                                       | 493580<br>493580 | 9134400<br>9134400 | 1994<br>1994 | 195.2m<br>239.7m | 0<br>090     | -65<br>-55 |  |  |  |  |
|                                         |    | ○ elevation or RL (Reduced Level –                                                                                                                                                                                                                       | KU23DD003                                                                                                                                                                                                                                                                    | 493580           | 9134400            | 1994         | 201.7m           | 180          | -60        |  |  |  |  |
|                                         |    | elevation above sea level in metres) of                                                                                                                                                                                                                  | KU23DD004                                                                                                                                                                                                                                                                    | 493580           | 9134400            | 1994         | 218.3m           | 315          | -60        |  |  |  |  |
|                                         |    | the drill hole collar                                                                                                                                                                                                                                    | KU23DD005                                                                                                                                                                                                                                                                    | 493631           | 9134558            | 2064         | 291.8m           | 0            | -60        |  |  |  |  |
|                                         |    | <ul> <li>dip and azimuth of the hole</li> </ul>                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                              |                  |                    |              |                  |              |            |  |  |  |  |
|                                         |    | <ul> <li>down hole length and interception depth</li> </ul>                                                                                                                                                                                              |                                                                                                                                                                                                                                                                              |                  |                    |              |                  |              |            |  |  |  |  |
|                                         |    | <ul> <li>hole length.</li> </ul>                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              |                  |                    |              |                  |              |            |  |  |  |  |
|                                         |    | If the exclusion of this information is<br>justified on the basis that the information is<br>not Material and this exclusion does not<br>detract from the understanding of the<br>report, the Competent Person should                                    |                                                                                                                                                                                                                                                                              |                  |                    |              |                  |              |            |  |  |  |  |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>Quoted drill intervals use a weighted average compositing method of assays within the interval.</li> <li>"Low grade Au intercept" is calculated using a 0.1g/t Au cut off with areas of up to 7m of internal dilution.</li> <li>"High grade Au intercept" is calculated using a &gt;0.5g/t Au cut off and less than 2m of internal dilution.</li> <li>No cut of high grades has been undertaken.</li> <li>Widths quoted are intercept widths, not true widths. Assays are reported as intercept widths, true widths are estimated to be 60% to 70% of reported value.</li> <li>Cu intercept is calculated using a 0.1 Cu % cut off with areas of up to 2m of internal dilution.</li> <li>Metal Factor calculations are based on True Thickness Intercepts x Weighted Average grade. Where there are multiple significant intersections from the same hole within the Upper Limestone Unit, these are combined to give an "Aggregated gram metre" intercept.</li> </ul> |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | <ul> <li>Efforts were made to intercept the mineralization as perpendicular as possible, but due to<br/>topographical challenges, drilling of multiple holes from 1 pad has been undertaken. This<br/>results in some of the mineralised intercepts occurring oblique to the target unit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Diagrams                                                                        | • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                                                                                                                                                                                           | Tabulations of drill hole assays provided as Table 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                             |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Balanced<br>reporting                       | • Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and<br>high grades and/or widths should be<br>practiced to avoid misleading reporting of<br>Exploration Results.                                                                                                                                                                       | Reporting is considered balanced.                                                                                                      |
| Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful and<br>material, should be reported including (but<br>not limited to): geological observations;<br>geophysical survey results; geochemical<br>survey results; bulk samples – size and<br>method of treatment; metallurgical test<br>results; bulk density, groundwater,<br>geotechnical and rock characteristics;<br>potential deleterious or contaminating<br>substances. | Surface mapping and sampling results, including trenching are described in the text of this ASX release.                               |
| Further work                                | • The nature and scale of planned further<br>work (eg tests for lateral extensions or<br>depth extensions or large-scale step-out<br>drilling).                                                                                                                                                                                                                                                                  | <ul> <li>Drilling to the north and west of KU23DD005 and Leah's Lode is planned in this current drill<br/>campaign in 2023.</li> </ul> |
|                                             | • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.                                                                                                                                                                                                              |                                                                                                                                        |